Category: Fever Research

  • Goliath

    Goliath is a Philistine giant in the Book of Samuel. Descriptions of Goliath’s immense stature vary among biblical sources, with various texts describing him as either 6 ft 9 in (2.06 m) or 9 ft 9 in (2.97 m) tall. According to the text, Goliath issued a challenge to the Israelites, daring them to send forth a champion to engage him in single combat; he was ultimately defeated by the young shepherd David, employing a sling and stone as a weapon. The narrative signified King Saul’s unfitness to rule, as Saul himself should have fought for the Kingdom of Israel.

    Some modern scholars believe that the original slayer of Goliath may have been Elhanan, son of Jair, who features in 2 Samuel 21:19, in which Elhanan kills Goliath the Gittite, and that the authors of the Deuteronomistic history changed the original text to credit the victory to the more famous figure David.

    The phrase “David and Goliath” has taken on a more popular meaning denoting an underdog situation, a contest wherein a smaller, weaker opponent faces a much bigger, stronger adversary.

    Biblical accounts

    In 1 Samuel 17, Saul and the Israelites are facing the Philistines in the Valley of Elah. Twice a day for 40 days, morning and evening, Goliath, the champion of the Philistines, comes out between the lines and challenges the Israelites to send out a champion of their own to decide the outcome in single combat, but Saul is afraid. David accepts the challenge. Saul reluctantly agrees and offers his armour, which David declines, taking only his staff, sling, and five stones from a brook.

    David and Goliath confront each other, Goliath with his armor and javelin, David with his staff and sling. “The Philistine cursed David by his gods”, but David replies:

    “This day the Lord will deliver you into my hand, and I will strike you down, and I will give the dead bodies of the host of the Philistines this day to the birds of the air and to the wild beasts of the earth; that all the earth may know that there is a god in Israel and that all this assembly may know that God saves not with sword and spear; for the battle is God’s, and he will give you into our hand.”

    —1 Samuel 17:46–47
    David hurls a stone from his sling and hits Goliath in the center of his forehead, Goliath falls on his face to the ground, and David cuts off his head. The Philistines flee and are pursued by the Israelites “as far as Gath and the gates of Ekron”. David puts the armor of Goliath in his own tent and takes the head to Jerusalem, and Saul sends Abner to bring the boy to him. The king asks whose son he is, and David answers:

    “I am the son of your servant Jesse the Bethlehemite.”

    —1 Samuel 17:58

    Composition of the Book of Samuel

    The Books of Samuel, together with the books of Joshua, Judges and Kings, make up a unified history of Israel which biblical scholars call the Deuteronomistic History. The first edition of the history was probably written at the court of Judah’s King Josiah (late 7th century BCE) and a revised second edition during the exile (6th century BCE), with further revisions in the post-exilic period. Traces of this can be seen in contradictions within the Goliath story, such as that between 1 Samuel 17:54, which says that David took Goliath’s head to Jerusalem, although according to 2 Samuel 5 Jerusalem at that time was still a Jebusite stronghold and was not captured until David became king.

    Structure of the David and Goliath narrative

    The Goliath story is made up of base-narrative with numerous additions made probably after the exile:

    Original story
    The Israelites and Philistines face each other; Goliath makes his challenge to single combat;
    David volunteers to fight Goliath;
    David selects five smooth stones from a creek-bed to be used in his sling;
    David’s courage strengthens others and eventually others defeat four other giants, possibly brothers, but relatives, reference 2 Samuel 21:15-22.
    David defeats Goliath, the Philistines flee the battlefield.
    Additions
    David is sent by his father to bring food to his brothers, hears the challenge, and expresses his desire to accept;
    Details of the account of the battle;
    Saul asks who David is, and he is introduced to the king through Abner.

    Textual considerations

    Goliath’s height

    The oldest manuscripts, namely the Dead Sea Scrolls text of Samuel from the late 1st century BCE, the 1st-century CE historian Josephus, and the major Septuagint manuscripts, all give Goliath’s height as “four cubits and a span” (6 feet 9 inches or 2.06 metres), whereas the Masoretic Text has “six cubits and a span” (9 feet 9 inches or 2.97 metres).Many scholars have suggested that the smaller number grew in the course of transmission (only a few have suggested the reverse, that an original larger number was reduced), possibly when a scribe’s eye was drawn to the number six in line 17:7.

    Goliath and Saul

    The underlying purpose of the story of Goliath is to show that Saul is not fit to be king (but that David is). Saul was chosen to lead the Israelites against their enemies, but when faced with Goliath, he refuses to do so; Saul is a head taller than anyone else in all Israel (1 Samuel 9:2), which implies he was over 6 feet (1.8 m) tall and the obvious challenger for Goliath, yet David is the one who eventually defeated him. Also, Saul’s armour and weaponry are apparently no better than Goliath’s:

    “David declares that when a lion or bear came and attacked his father’s sheep, he battled against it and killed it, [but Saul] has been cowering in fear instead of rising up and attacking the threat to his sheep (i.e., Israel).”

    David’s speech in 1 Samuel 17 can be interpreted as referring to both Saul and Goliath through its animal imagery. When this imagery is considered closely, David can be seen to function as the true king who manipulates wild beasts.

    Elhanan and Goliath

    In 2 Samuel 21, verse 19, the Hebrew Bible tells how Goliath’s brother was killed by “Elhanan the son of Jaare-oregim, the Bethlehemite”. The fourth-century BC 1 Chronicle 20:5 explains the second Goliath by saying that Elhanan “slew Lahmi the brother of Goliath”, constructing the name Lahmi from the last portion of the word “Bethlehemite” (“beit-ha’lahmi”), and the King James Bible adopted this into 2 Samuel 21:18–19, but the Hebrew text at Goliath’s name makes no mention of the word “brother”. Most scholars dismiss the later 1 Chronicles 20:5 material as “an obvious harmonization”.

    Goliath and the Greeks

    The armor described in 1 Samuel 17 appears typical of Greek armor of the sixth century BCE; narrative formulae such as the settlement of battle by single combat between champions has been thought characteristic of the Homeric epics (the Iliad) rather than of the ancient Near East. The designation of Goliath as a “man of the in-between” (a longstanding difficulty in translating 1 Samuel 17) appears to be a borrowing from Greek “man of the metaikhmion”, i.e., the space between two opposite army camps where champion combat would take place. Other scholars argue the description is a trustworthy reflection of the armaments that a Philistine warrior would have worn in the tenth century BCE.

    A story very similar to that of David and Goliath appears in the Iliad, written c.760–710 BCE, where the young Nestor fights and conquers the giant Ereuthalion. Each giant wields a distinctive weapon—an iron club in Ereuthalion’s case, a massive bronze spear in Goliath’s; each giant, clad in armor, comes out of the enemy’s massed array to challenge all the warriors in the opposing army; in each case the seasoned warriors are afraid, and the challenge is taken up by a stripling, the youngest in his family (Nestor is the twelfth son of Neleus, David the seventh or eighth son of Jesse). In each case an older and more experienced father figure (Nestor’s own father, David’s patron Saul) tells the boy that he is too young and inexperienced, but in each case the young hero receives divine aid and the giant is left sprawling on the ground. Nestor, fighting on foot, then takes the chariot of his enemy, while David, on foot, takes the sword of Goliath. The enemy army then flees, the victors pursue and slaughter them and return with their bodies, and the boy-hero is acclaimed by the people. However, some scholars question whether the biblical writers would have ever had access to the Iliad, and argue that the similarities between both tales are also present in other ancient Near Eastern accounts of duels.

    Goliath’s name

    Tell es-Safi, the biblical Gath and traditional home of Goliath, has been the subject of extensive excavations by Israel’s Bar-Ilan University. The archaeologists have established that this was one of the largest of the Philistine cities until it was destroyed in the ninth century BC, an event from which it never recovered. The Tell es-Safi inscription, a potsherd discovered at the site, and reliably dated to between the tenth to mid-ninth centuries BC, is inscribed with the two names ʾLWT and WLT. While the names are not directly connected with the biblical Goliath , they are etymologically related and demonstrate that the name fits with the context of the late tenth- to early ninth-century BC Philistine culture. The name “Goliath” itself is non-Semitic and has been linked with the Lydian king Alyattes, which also fits the Philistine context of the biblical Goliath story.A similar name, Uliat, is also attested in Carian inscriptions.[29] Aren Maeir, director of the excavation, comments: “Here we have very nice evidence the name Goliath appearing in the Bible in the context of the story of David and Goliath… is not some later literary creation.”

    Based on the southwest Anatolian onomastic considerations, Roger D. Woodard proposed *Walwatta as a reconstruction of the form ancestral to both Hebrew Goliath and Lydian Alyattes. In this case, the original meaning of Goliath’s name would be “Lion-man,” thus placing him within the realm of Indo-European warrior-beast mythology.

    The Babylonian Talmud explains the name “Goliath, son of Gath” through a reference to his mother’s promiscuity, based on the Aramaic גַּת (gat, winepress), as everyone threshed his mother as people do to grapes in a winepress (Sotah, 42b).

    The name sometimes appears in English as Goliah.

    Later traditions

    Judaism

    According to the Babylonian Talmud (Sotah 42b), Goliath was a son of Orpah, the sister-in-law of Ruth, David’s own great-grandmother (Ruth → Obed → Jesse → David). Ruth Rabbah, a haggadic and homiletic interpretation of the Book of Ruth, makes the blood relationship even closer, considering Orpah and Ruth to have been full sisters. Orpah was said to have made a pretense of accompanying Ruth but after forty paces left her. Thereafter she led a dissolute life. According to the Jerusalem Talmud, Goliath was born by polyspermy, and had about one hundred fathers.

    The Talmud stresses Goliath’s ungodliness: his taunts before the Israelites included the boast that it was he who had captured the Ark of the Covenant and brought it to the temple of Dagon, and his challenges to combat were made at morning and evening to disturb the Israelites in their prayers. His armor weighed 60 tons, according to rabbi Hanina; 120, according to rabbi Abba bar Kahana; and his sword, which became the sword of David, had marvelous powers. On his death it was found that his heart carried the image of Dagon, who thereby also came to a shameful downfall.

    In Pseudo-Philo, believed to have been composed between 135 BCE and 70 CE, David picks up seven stones and writes on them his father’s name, his own name, and the name of God, one name per stone; then, speaking to Goliath, he says:

    “Hear this word before you die: were not the two woman from whom you and I were born, sisters? And your mother was Orpah and my mother Ruth …”

    After David strikes Goliath with the stone he runs to Goliath before he dies, and Goliath says: “Hurry and kill me and rejoice.” David replies: “Before you die, open your eyes and see your slayer.” Goliath sees an angel and tells David that it is not he who has killed him but the angel. Pseudo-Philo then goes on to say that the angel of the Lord changes David’s appearance so that no one recognizes him, and thus Saul asks who he is.

    Islam

    Goliath appears in chapter 2 of the Quran (2: 247–252), in the narrative of David and Saul’s battle against the Philistines.Called Jalut in Arabic (جالوت), Goliath’s mention in the Quran is concise, although it remains a parallel to the account in the Hebrew Bible. Muslim scholars have tried to trace Goliath’s origins, most commonly with the Amalekites. Goliath, in early scholarly tradition, became a kind of byword or collective name for the oppressors of the Israelite nation before David. Muslim tradition sees the battle with Goliath as a prefiguration of Muhammad’s battle of Badr, and sees Goliath as parallel to the enemies that Muhammad faced.

    Modern usages of David and Goliath

    In modern usage, the phrase “David and Goliath” has taken on a secular meaning, denoting an underdog situation, a contest where a smaller, weaker opponent faces a much bigger, stronger adversary; if successful, the underdog may win in an unusual or surprising way.

    Theology professor Leonard Greenspoon, in his essay, “David vs. Goliath in the Sports Pages”, explains that “most writers use the story for its underdog overtones (the little guy wins) … Less likely to show up in newsprint is the contrast that was most important to the biblical authors: David’s victory shows the power of his God, while Goliath’s defeat reveals the weakness of the Philistine deities.”

    The phrase is widely used in news media to succinctly characterize underdog situations in many contexts without religious overtones. Contemporary headlines include: sports (“Haye relishes underdog role in ‘David and Goliath’ fight with Nikolai Valuev”—The Guardian); business (“On Internet, David-and-Goliath Battle Over Instant Messages”—The New York Times); science (“David and Goliath: How a tiny spider catches much larger prey”—ScienceDaily; politics (“Dissent in Cuba: David and Goliath”—The Economist); social justice (“David-and-Goliath Saga Brings Cable to Skid Row”—Los Angeles Times).

    Aside from the above allegorical use of “David and Goliath”, there is also the use of “Goliath” for a particularly tall person. For example, basketball player Wilt Chamberlain was nicknamed “Goliath”, which he disliked.

    American actor Ted Cassidy portrayed Goliath in the TV series Greatest Heroes of the Bible (1978). Italian actor Luigi Montefiori portrayed this 9 ft 0 in (2.74 m)-tall giant in Paramount’s 1985 live-action film King David as part of a flashback. This film includes the King of the Philistines saying: “Goliath has challenged the Israelites six times and no one has responded.” It is then on the seventh time that David meets his challenge.

    Toho and Tsuburaya Productions collaborated on a film called Daigoro vs. Goliath (1972), which follows the story relatively closely but recasts the main characters as kaiju.

    In 2005, Lightstone Studios released a direct-to-DVD movie musical titled “One Smooth Stone”, which was later changed to “David and Goliath”. It is part of the Liken the scriptures (now just Liken) series of movie musicals on DVD based on scripture stories. Thurl Bailey, a former NBA basketball player, was cast to play the part of Goliath in this film.

    In 2009, NBC aired Kings, which has a narrative loosely based on the biblical story of King David, but set in a kingdom that culturally and technologically resembles the present-day United States. The part of Goliath is portrayed by a tank, which David destroys with a shoulder-fired rocket launcher.

    In 1975, Kaveret recorded and released a humorous interpretation of the Goliath story, with several changes made such as Goliath being the “Demon from Ashkelon”, and David randomly meeting Goliath rather than dueling each other on a battlefield.

    Italian Goliath film series (1960–1964)

    The Italians used Goliath as an action superhero in a series of biblical adventure films (peplums) in the early 1960s. He possessed amazing strength, and the films were similar in theme to their Hercules and Maciste movies. After the classic Hercules (1958) became a blockbuster sensation in the film industry, the 1959 Steve Reeves film Terrore dei Barbari (Terror of the Barbarians) was retitled Goliath and the Barbarians in the United States, (after Joseph E. Levine claimed the sole right to the name of Hercules); the film was so successful at the box office, it inspired Italian filmmakers to do a series of four more films featuring a beefcake hero named Goliath, although the films were not really related to each other. Note that the Italian film David and Goliath (1960), starring Orson Welles, was not one of these, since that film was a straightforward adaptation of the biblical story.

    The four titles in the Italian Goliath series were as follows:

    Goliath contro i giganti/Goliath Against the Giants (1960) starring Brad Harris
    Goliath e la schiava ribelle/Goliath and the Rebel Slave (a.k.a. The Tyrant of Lydia vs. The Son of Hercules) (1963) starring Gordon Scott
    Golia e il cavaliere mascherato/Goliath and the Masked Rider (a.k.a. Hercules and the Masked Rider) (1964) starring Alan Steel
    Golia alla conquista di Bagdad/Goliath at the Conquest of Baghdad (a.k.a. Goliath at the Conquest of Damascus, 1964) starring Peter Lupus


    The name Goliath was later inserted into the film titles of three other Italian muscle man movies that were retitled for distribution in the United States in an attempt to cash in on the Goliath craze, but these films were not originally made as Goliath films in Italy.

    Both Goliath and the Vampires (1961) and Goliath and the Sins of Babylon (1963) actually featured the famed superhero Maciste in the original Italian versions, but American distributors did not feel the name Maciste had any meaning to American audiences. Goliath and the Dragon (1960) was originally an Italian Hercules film called The Revenge of Hercules.

  • Proposition

    A proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as the type of object that declarative sentences denote. For instance, the sentence “The sky is blue” denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions. For instance, the English sentence “Snow is white” denotes the same proposition as the German sentence “Schnee ist weiß” even though the two sentences are not the same. Similarly, propositions can also be characterized as the objects of belief and other propositional attitudes. For instance if someone believes that the sky is blue, the object of their belief is the proposition that the sky is blue.

    Formally, propositions are often modeled as functions which map a possible world to a truth value. For instance, the proposition that the sky is blue can be modeled as a function which would return the truth value T if given the actual world as input, but would return F if given some alternate world where the sky is green. However, a number of alternative formalizations have been proposed, notably the structured propositions view.

    Propositions have played a large role throughout the history of logic, linguistics, philosophy of language, and related disciplines. Some researchers have doubted whether a consistent definition of propositionhood is possible, David Lewis even remarking that “the conception we associate with the word ‘proposition’ may be something of a jumble of conflicting desiderata”. The term is often used broadly and has been used to refer to various related concepts.

    Relation to the mind

    In relation to the mind, propositions are discussed primarily as they fit into propositional attitudes. Propositional attitudes are simply attitudes characteristic of folk psychology (belief, desire, etc.) that one can take toward a proposition (e.g. ‘it is raining,’ ‘snow is white,’ etc.). In English, propositions usually follow folk psychological attitudes by a “that clause” (e.g. “Jane believes that it is raining”). In philosophy of mind and psychology, mental states are often taken to primarily consist in propositional attitudes. The propositions are usually said to be the “mental content” of the attitude. For example, if Jane has a mental state of believing that it is raining, her mental content is the proposition ‘it is raining.’ Furthermore, since such mental states are about something (namely, propositions), they are said to be intentional mental states.

    Explaining the relation of propositions to the mind is especially difficult for non-mentalist views of propositions, such as those of the logical positivists and Russell described above, and Gottlob Frege’s view that propositions are Platonist entities, that is, existing in an abstract, non-physical realm. So some recent views of propositions have taken them to be mental. Although propositions cannot be particular thoughts since those are not shareable, they could be types of cognitive events or properties of thoughts (which could be the same across different thinkers).

    Philosophical debates surrounding propositions as they relate to propositional attitudes have also recently centered on whether they are internal or external to the agent, or whether they are mind-dependent or mind-independent entities. For more, see the entry on internalism and externalism in philosophy of mind.

    Objections to propositions

    Attempts to provide a workable definition of proposition include the following:

    Two meaningful declarative sentences express the same proposition, if and only if they mean the same thing.

    which defines proposition in terms of synonymity. For example, “Snow is white” (in English) and “Schnee ist weiß” (in German) are different sentences, but they say the same thing, so they express the same proposition. Another definition of proposition is:

    Two meaningful declarative sentence-tokens express the same proposition, if and only if they mean the same thing.

    The above definitions can result in two identical sentences/sentence-tokens appearing to have the same meaning, and thus expressing the same proposition and yet having different truth-values, as in “I am Spartacus” said by Spartacus and said by John Smith, and “It is Wednesday” said on a Wednesday and on a Thursday. These examples reflect the problem of ambiguity in common language, resulting in a mistaken equivalence of the statements. “I am Spartacus” spoken by Spartacus is the declaration that the individual speaking is called Spartacus and it is true. When spoken by John Smith, it is a declaration about a different speaker and it is false. The term “I” means different things, so “I am Spartacus” means different things.

    A related problem is when identical sentences have the same truth-value, yet express different propositions. The sentence “I am a philosopher” could have been spoken by both Socrates and Plato. In both instances, the statement is true, but means something different.

    These problems are addressed in predicate logic by using a variable for the problematic term, so that “X is a philosopher” can have Socrates or Plato substituted for X, illustrating that “Socrates is a philosopher” and “Plato is a philosopher” are different propositions. Similarly, “I am Spartacus” becomes “X is Spartacus”, where X is replaced with terms representing the individuals Spartacus and John Smith.

    In other words, the example problems can be averted if sentences are formulated with precision such that their terms have unambiguous meanings.

    A number of philosophers and linguists claim that all definitions of a proposition are too vague to be useful. For them, it is just a misleading concept that should be removed from philosophy and semantics. W. V. Quine, who granted the existence of sets in mathematics, maintained that the indeterminacy of translation prevented any meaningful discussion of propositions, and that they should be discarded in favor of sentences. P. F. Strawson, on the other hand, advocated for the use of the term “statement”.

    Historical usage

    By Aristotle

    In Aristotelian logic a proposition was defined as a particular kind of sentence (a declarative sentence) that affirms or denies a predicate of a subject, optionally with the help of a copula. Aristotelian propositions take forms like “All men are mortal” and “Socrates is a man.”

    Aristotelian logic identifies a categorical proposition as a sentence which affirms or denies a predicate of a subject, optionally with the help of a copula. An Aristotelian proposition may take the form of “All men are mortal” or “Socrates is a man.” In the first example, the subject is “men”, predicate is “mortal” and copula is “are”, while in the second example, the subject is “Socrates”, the predicate is “a man” and copula is “is”.

    By the logical positivists

    Often, propositions are related to closed formulae (or logical sentence) to distinguish them from what is expressed by an open formula. In this sense, propositions are “statements” that are truth-bearers. This conception of a proposition was supported by the philosophical school of logical positivism.

    Some philosophers argue that some (or all) kinds of speech or actions besides the declarative ones also have propositional content. For example, yes–no questions present propositions, being inquiries into the truth value of them. On the other hand, some signs can be declarative assertions of propositions, without forming a sentence nor even being linguistic (e.g. traffic signs convey definite meaning which is either true or false).

    Propositions are also spoken of as the content of beliefs and similar intentional attitudes, such as desires, preferences, and hopes. For example, “I desire that I have a new car”, or “I wonder whether it will snow” (or, whether it is the case that “it will snow”). Desire, belief, doubt, and so on, are thus called propositional attitudes when they take this sort of content.

    By Russell

    Bertrand Russell held that propositions were structured entities with objects and properties as constituents. One important difference between Ludwig Wittgenstein’s view (according to which a proposition is the set of possible worlds/states of affairs in which it is true) is that on the Russellian account, two propositions that are true in all the same states of affairs can still be differentiated. For instance, the proposition “two plus two equals four” is distinct on a Russellian account from the proposition “three plus three equals six”. If propositions are sets of possible worlds, however, then all mathematical truths (and all other necessary truths) are the same set (the set of all possible worlds).

  • Evidence

    Evidence for a proposition is what supports the proposition. It is usually understood as an indication that the proposition is true. The exact definition and role of evidence vary across different fields. In epistemology, evidence is what justifies beliefs or what makes it rational to hold a certain doxastic attitude. For example, a perceptual experience of a tree may serve as evidence to justify the belief that there is a tree. In this role, evidence is usually understood as a private mental state. In phenomenology, evidence is limited to intuitive knowledge, often associated with the controversial assumption that it provides indubitable access to truth.

    In the science, scientific evidence is information gained through the scientific method that confirms or disconfirms scientific hypotheses, acting as a neutral arbiter between competing theories. Measurements of Mercury’s “anomalous” orbit, for example, are seen as evidence that confirms Einstein’s theory of general relativity. The problems of underdetermination and theory-ladenness are two obstacles that threaten to undermine the role of scientific evidence. Philosophers of science tend to understand evidence not as mental states but as verifiable information, observable physical objects or events, secured by following the scientific method.

    In law, evidence is information to establish or refute claims relevant to a case, such as testimony, documentary evidence, and physical evidence.

    The relation between evidence and a supported statement can vary in strength, ranging from weak correlation to indisputable proof. Theories of the evidential relation examine the nature of this connection. Probabilistic approaches hold that something counts as evidence if it increases the probability of the supported statement. According to hypothetico-deductivism, evidence consists in observational consequences of a hypothesis. The positive-instance approach states that an observation sentence is evidence for a universal statement if the sentence describes a positive instance of this statement.

    Nature of evidence

    Notion

    Understood in its broadest sense, evidence for a proposition is what supports this proposition. Traditionally, the term is sometimes understood in a narrower sense: as the intuitive knowledge of facts that are considered indubitable. In this sense, only the singular form is used. This meaning is found especially in phenomenology, in which evidence is elevated to one of the basic principles of philosophy, giving philosophy the ultimate justifications that are supposed to turn it into a rigorous science. In a more modern usage, the plural form is also used. In academic discourse, evidence plays a central role in epistemology and in the philosophy of science. Reference to evidence is made in many different fields, like in science, in the legal system, in history, in journalism and in everyday discourse. A variety of different attempts have been made to conceptualize the nature of evidence. These attempts often proceed by starting with intuitions from one field or in relation to one theoretical role played by evidence and go on to generalize these intuitions, leading to a universal definition of evidence.

    One important intuition is that evidence is what justifies beliefs. This line of thought is usually followed in epistemology and tends to explain evidence in terms of private mental states, for example, as experiences, other beliefs or knowledge. This is closely related to the idea that how rational someone is, is determined by how they respond to evidence.Another intuition, which is more dominant in the philosophy of science, focuses on evidence as that which confirms scientific hypotheses and arbitrates between competing theories. On this view, it is essential that evidence is public so that different scientists can share the same evidence. This leaves publicly observable phenomena like physical objects and events as the best candidates for evidence, unlike private mental states. One problem with these approaches is that the resulting definitions of evidence, both within a field and between fields, vary a lot and are incompatible with each other. For example, it is not clear what a bloody knife and a perceptual experience have in common when both are treated as evidence in different disciplines. This suggests that there is no unitary concept corresponding to the different theoretical roles ascribed to evidence, i.e. that we do not always mean the same thing when we talk of evidence.

    Characteristics

    On the other hand, Aristotle, phenomenologists, and numerous scholars accept that there could be several degrees of evidence. For instance, while the outcome of a complex equation may become more or less evident to a mathematician after hours of deduction, yet with little doubts about it, a simpler formula would appear more evident to them.

    Riofrio has detected some characteristics that are present in evident arguments and proofs. The more they are evident, the more these characteristics will be present. There are six intrinsic characteristics of evidence:

    The truth lies in what is evident, while falsehood or irrationality, although it may appear evident at times, lacks true evidence.
    What is evident aligns coherently with other truths acquired through knowledge. Any insurmountable incoherence would indicate the presence of error or falsehood.
    Evident truths are based on necessary reasoning.
    The simplest truths are the most evident. They are self-explanatory and do not require argumentation to be understood by the intellect. However, for those lacking education, certain complex truths require rational discourse to become evident.
    Evident truths do not need justification; they are indubitable. They are intuitively grasped by the intellect, without the need for further discourse, arguments, or proof.
    Evident truths are clear, translucent, and filled with light.
    In addition, four subjective or external characteristics can be detected over those things that are more or less evident:

    The evident instills certainty and grants the knower a subjective sense of security, as they believe to have aligned with the truth
    Initially, evident truths are perceived as natural and effortless, as Aristotle highlighted. They are innately present within the intellect, fostering a peaceful and harmonious understanding.
    Consequently, evident truths appear to be widely shared, strongly connected to common sense, which comprises generally accepted beliefs.
    Evident truths are fertile ground: they provide a solid foundation for other branches of scientific knowledge to flourish.
    These ten characteristics of what is evident allowed Riofrio to formulate a test of evidence to detect the level of certainty or evidence that one argument or proof could have.

    Different approaches to evidence

    Important theorists of evidence include Bertrand Russell, Willard Van Orman Quine, the logical positivists, Timothy Williamson, Earl Conee and Richard Feldman. Russell, Quine and the logical positivists belong to the empiricist tradition and hold that evidence consists in sense data, stimulation of one’s sensory receptors and observation statements, respectively. According to Williamson, all and only knowledge constitute evidence.Conee and Feldman hold that only one’s current mental states should be considered evidence.

    In epistemology

    The guiding intuition within epistemology concerning the role of evidence is that it is what justifies beliefs. For example, Phoebe’s auditory experience of the music justifies her belief that the speakers are on. Evidence has to be possessed by the believer in order to play this role. So Phoebe’s own experiences can justify her own beliefs but not someone else’s beliefs. Some philosophers hold that evidence possession is restricted to conscious mental states, for example, to sense data. This view has the implausible consequence that many of simple everyday-beliefs would be unjustified. The more common view is that all kinds of mental states, including stored beliefs that are currently unconscious, can act as evidence. It is sometimes argued that the possession of a mental state capable of justifying another is not sufficient for the justification to happen. The idea behind this line of thought is that justified belief has to be connected to or grounded in the mental state acting as its evidence. So Phoebe’s belief that the speakers are on is not justified by her auditory experience if the belief is not based in this experience. This would be the case, for example, if Phoebe has both the experience and the belief but is unaware of the fact that the music is produced by the speakers.

    It is sometimes held that only propositional mental states can play this role, a position known as “propositionalism”. A mental state is propositional if it is an attitude directed at a propositional content. Such attitudes are usually expressed by verbs like “believe” together with a that-clause, as in “Robert believes that the corner shop sells milk”.Such a view denies that sensory impressions can act as evidence. This is often held as an argument against this view since sensory impressions are commonly treated as evidence. Propositionalism is sometimes combined with the view that only attitudes to true propositions can count as evidence. On this view, the belief that the corner shop sells milk only constitutes evidence for the belief that the corner shop sells dairy products if the corner shop actually sells milk. Against this position, it has been argued that evidence can be misleading but still count as evidence.

    This line of thought is often combined with the idea that evidence, propositional or otherwise, determines what it is rational for us to believe. But it can be rational to have a false belief. This is the case when we possess misleading evidence. For example, it was rational for Neo in the Matrix movie to believe that he was living in the 20th century because of all the evidence supporting his belief despite the fact that this evidence was misleading since it was part of a simulated reality. This account of evidence and rationality can also be extended to other doxastic attitudes, like disbelief and suspension of belief. So rationality does not just demand that we believe something if we have decisive evidence for it, it also demands that we disbelieve something if we have decisive evidence against it and that we suspend belief if we lack decisive evidence either way.

    In phenomenology

    The meaning of the term “evidence” in phenomenology shows many parallels to its epistemological usage, but it is understood in a narrower sense. Thus, evidence here specifically refers to intuitive knowledge, which is described as “self-given” (selbst-gegeben). This contrasts with empty intentions, in which one refers to states of affairs through a certain opinion, but without an intuitive presentation. This is why evidence is often associated with the controversial thesis that it constitutes an immediate access to truth. In this sense, the evidently given phenomenon guarantees its own truth and is therefore considered indubitable. Due to this special epistemological status of evidence, it is regarded in phenomenology as the basic principle of all philosophy.In this form, it represents the lowest foundation of knowledge, which consists of indubitable insights upon which all subsequent knowledge is built. This evidence-based method is meant to make it possible for philosophy to overcome many of the traditionally unresolved disagreements and thus become a rigorous science.This far-reaching claim of phenomenology, based on absolute certainty, is one of the focal points of criticism by its opponents. Thus, it has been argued that even knowledge based on self-evident intuition is fallible. This can be seen, for example, in the fact that even among phenomenologists, there is much disagreement about the basic structures of experience.

    In science

    In the sciences, evidence is understood as what confirms or disconfirms scientific hypotheses. The term “confirmation” is sometimes used synonymously with that of “evidential support”. Measurements of Mercury’s “anomalous” orbit, for example, are seen as evidence that confirms Einstein’s theory of general relativity. This is especially relevant for choosing between competing theories. So in the case above, evidence plays the role of neutral arbiter between Newton’s and Einstein’s theory of gravitation. This is only possible if scientific evidence is public and uncontroversial so that proponents of competing scientific theories agree on what evidence is available. These requirements suggest scientific evidence consists not of private mental states but of public physical objects or events.

    It is often held that evidence is in some sense prior to the hypotheses it confirms. This was sometimes understood as temporal priority, i.e. that we come first to possess the evidence and later form the hypothesis through induction. But this temporal order is not always reflected in scientific practice, where experimental researchers may look for a specific piece of evidence in order to confirm or disconfirm a pre-existing hypothesis. Logical positivists, on the other hand, held that this priority is semantic in nature, i.e. that the meanings of the theoretical terms used in the hypothesis are determined by what would count as evidence for them. Counterexamples for this view come from the fact that our idea of what counts as evidence may change while the meanings of the corresponding theoretical terms remain constant. The most plausible view is that this priority is epistemic in nature, i.e. that our belief in a hypothesis is justified based on the evidence while the justification for the belief in the evidence does not depend on the hypothesis.

    A central issue for the scientific conception of evidence is the problem of underdetermination, i.e. that the evidence available supports competing theories equally well. So, for example, evidence from our everyday life about how gravity works confirms Newton’s and Einstein’s theory of gravitation equally well and is therefore unable to establish consensus among scientists. But in such cases, it is often the gradual accumulation of evidence that eventually leads to an emerging consensus. This evidence-driven process towards consensus seems to be one hallmark of the sciences not shared by other fields.

    Another problem for the conception of evidence in terms of confirmation of hypotheses is that what some scientists consider the evidence to be may already involve various theoretical assumptions not shared by other scientists. This phenomenon is known as theory-ladenness. Some cases of theory-ladenness are relatively uncontroversial, for example, that the numbers output by a measurement device need additional assumptions about how this device works and what was measured in order to count as meaningful evidence.Other putative cases are more controversial, for example, the idea that different people or cultures perceive the world through different, incommensurable conceptual schemes, leading them to very different impressions about what is the case and what evidence is available. Theory-ladenness threatens to impede the role of evidence as neutral arbiter since these additional assumptions may favor some theories over others. It could thereby also undermine a consensus to emerge since the different parties may be unable to agree even on what the evidence is. When understood in the widest sense, it is not controversial that some form of theory-ladenness exists. But it is questionable whether it constitutes a serious threat to scientific evidence when understood in this sense.

    Nature of the evidential relation

    Philosophers in the 20th century started to investigate the “evidential relation”, the relation between evidence and the proposition supported by it. The issue of the nature of the evidential relation concerns the question of what this relation has to be like in order for one thing to justify a belief or to confirm a hypothesis. Important theories in this field include the probabilistic approach, hypothetico-deductivism and the positive-instance approach.

    Probabilistic approaches, also referred to as Bayesian confirmation theory, explain the evidential relation in terms of probabilities. They hold that all that is necessary is that the existence of the evidence increases the likelihood that the hypothesis is true. In words: a piece of evidence (E) confirms a hypothesis (H) if the conditional probability of this hypothesis relative to the evidence is higher than the unconditional probability of the hypothesis by itself. Smoke (E), for example, is evidence that there is a fire (H), because the two usually occur together, which is why the likelihood of fire given that there is smoke is higher than the likelihood of fire by itself. On this view, evidence is akin to an indicator or a symptom of the truth of the hypothesis. Against this approach, it has been argued that it is too liberal because it allows accidental generalizations as evidence. Finding a nickel in one’s pocket, for example, raises the probability of the hypothesis that “All the coins in my pockets are nickels”. But, according to Alvin Goldman, it should not be considered evidence for this hypothesis since there is no lawful connection between this one nickel and the other coins in the pocket.

    Hypothetico-deductivism is a non-probabilistic approach that characterizes the evidential relations in terms of deductive consequences of the hypothesis. According to this view, ”evidence for a hypothesis is a true observational consequence of that hypothesis”. One problem with the characterization so far is that hypotheses usually contain relatively little information and therefore have few if any deductive observational consequences. So the hypothesis by itself that there is a fire does not entail that smoke is observed. Instead, various auxiliary assumptions have to be included about the location of the smoke, the fire, the observer, the lighting conditions, the laws of chemistry, etc. In this way, the evidential relation becomes a three-place relation between evidence, hypothesis and auxiliary assumptions. This means that whether a thing is evidence for a hypothesis depends on the auxiliary assumptions one holds. This approach fits well with various scientific practices. For example, it is often the case that experimental scientists try to find evidence that would confirm or disconfirm a proposed theory. The hypothetico-deductive approach can be used to predict what should be observed in an experiment if the theory was true.It thereby explains the evidential relation between the experiment and the theory.One problem with this approach is that it cannot distinguish between relevant and certain irrelevant cases. So if smoke is evidence for the hypothesis “there is fire”, then it is also evidence for conjunctions including this hypothesis, for example, “there is fire and Socrates was wise”, despite the fact that Socrates’s wisdom is irrelevant here.

    According to the positive-instance approach, an observation sentence is evidence for a universal hypothesis if the sentence describes a positive instance of this hypothesis. For example, the observation that “this swan is white” is an instance of the universal hypothesis that “all swans are white”. This approach can be given a precise formulation in first-order logic: a proposition is evidence for a hypothesis if it entails the “development of the hypothesis”. Intuitively, the development of the hypothesis is what the hypothesis states if it was restricted to only the individuals mentioned in the evidence. In the case above, we have the hypothesis which, when restricted to the domain “{a}”, containing only the one individual mentioned in the evidence, entails the evidence, i.e.One important shortcoming of this approach is that it requires that the hypothesis and the evidence are formulated in the same vocabulary, i.e. use the same predicates, above. But many scientific theories posit theoretical objects, like electrons or strings in physics, that are not directly observable and therefore cannot show up in the evidence as conceived here.

    Empirical evidence (in science)

    In scientific research evidence is accumulated through observations of phenomena that occur in the natural world, or which are created as experiments in a laboratory or other controlled conditions. Scientists tend to focus on how the data used during statistical inference are generated. Scientific evidence usually goes towards supporting or rejecting a hypothesis.

    The burden of proof is on the person making a contentious claim. Within science, this translates to the burden resting on presenters of a paper, in which the presenters argue for their specific findings. This paper is placed before a panel of judges where the presenter must defend the thesis against all challenges.

    When evidence is contradictory to predicted expectations, the evidence and the ways of making it are often closely scrutinized (see experimenter’s regress) and only at the end of this process is the hypothesis rejected: this can be referred to as ‘refutation of the hypothesis’. The rules for evidence used by science are collected systematically in an attempt to avoid the bias inherent to anecdotal evidence.

    Law

    In law, the production and presentation of evidence depend first on establishing on whom the burden of proof lies. Admissible evidence is that which a court receives and considers for the purposes of deciding a particular case. Two primary burden-of-proof considerations exist in law. The first is on whom the burden rests. In many, especially Western, courts, the burden of proof is placed on the prosecution in criminal cases and the plaintiff in civil cases. The second consideration is the degree of certitude proof must reach, depending on both the quantity and quality of evidence. These degrees are different for criminal and civil cases, the former requiring evidence beyond a reasonable doubt, the latter considering only which side has the preponderance of evidence, or whether the proposition is more likely true or false.

    The parts of a legal case that are not in controversy are known, in general, as the “facts of the case.” Beyond any facts that are undisputed, a judge or jury is usually tasked with being a trier of fact for the other issues of a case. Evidence and rules are used to decide questions of fact that are disputed, some of which may be determined by the legal burden of proof relevant to the case. Evidence in certain cases (e.g. capital crimes) must be more compelling than in other situations (e.g. minor civil disputes), which drastically affects the quality and quantity of evidence necessary to decide a case. The decision-maker, often a jury, but sometimes a judge decides whether the burden of proof has been fulfilled. After deciding who will carry the burden of proof, the evidence is first gathered and then presented before the court:

    Collection

    In a criminal investigation, rather than attempting to prove an abstract or hypothetical point, the evidence gatherers attempt to determine who is responsible for a criminal act. The focus of criminal evidence is to connect physical evidence and reports of witnesses to a specific person

    Presentation

    The path that physical evidence takes from the scene of a crime or the arrest of a suspect to the courtroom is called the chain of custody. In a criminal case, this path must be clearly documented or attested to by those who handled the evidence. If the chain of evidence is broken, a defendant may be able to persuade the judge to declare the evidence inadmissible.

    Presenting evidence before the court differs from the gathering of evidence in important ways. Gathering evidence may take many forms; presenting evidence that tends to prove or disprove the point at issue is strictly governed by rules. Failure to follow these rules leads to any number of consequences. In law, certain policies allow (or require) evidence to be excluded from consideration based either on indicia relating to reliability, or broader social concerns. Testimony (which tells) and exhibits (which show) are the two main categories of evidence presented at a trial or hearing. In the United States, evidence in federal court is admitted or excluded under the Federal Rules of Evidence.

    Burden of proof

    The burden of proof is the obligation of a party in an argument or dispute to provide sufficient evidence to shift the other party’s or a third party’s belief from their initial position. The burden of proof must be fulfilled by both establishing confirming evidence and negating oppositional evidence. Conclusions drawn from evidence may be subject to criticism based on a perceived failure to fulfill the burden of proof.

    Two principal considerations are:

    On whom does the burden of proof rest?
    To what degree of certitude must the assertion be supported?
    The latter question depends on the nature of the point under contention and determines the quantity and quality of evidence required to meet the burden of proof.

    In a criminal trial in the United States, for example, the prosecution carries the burden of proof since the defendant is presumed innocent until proven guilty beyond a reasonable doubt. Similarly, in most civil procedures, the plaintiff carries the burden of proof and must convince a judge or jury that the preponderance of the evidence is on their side. Other legal standards of proof include “reasonable suspicion”, “probable cause” (as for arrest), “prima facie evidence”, “credible evidence”, “substantial evidence”, and “clear and convincing evidence”.

    In a philosophical debate, there is an implicit burden of proof on the party asserting a claim, since the default position is generally one of neutrality or unbelief. Each party in a debate will therefore carry the burden of proof for any assertion they make in the argument, although some assertions may be granted by the other party without further evidence. If the debate is set up as a resolution to be supported by one side and refuted by another, the overall burden of proof is on the side supporting the resolution.

  • Empirical evidence

    Empirical evidence is evidence obtained through sense experience or experimental procedure. It is of central importance to the sciences and plays a role in various other fields, like epistemology and law.

    There is no general agreement on how the terms evidence and empirical are to be defined. Often different fields work with quite different conceptions. In epistemology, evidence is what justifies beliefs or what determines whether holding a certain belief is rational. This is only possible if the evidence is possessed by the person, which has prompted various epistemologists to conceive evidence as private mental states like experiences or other beliefs. In philosophy of science, on the other hand, evidence is understood as that which confirms or disconfirms scientific hypotheses and arbitrates between competing theories. For this role, evidence must be public and uncontroversial, like observable physical objects or events and unlike private mental states, so that evidence may foster scientific consensus. The term empirical comes from Greek ἐμπειρία empeiría, i.e. ‘experience’. In this context, it is usually understood as what is observable, in contrast to unobservable or theoretical objects. It is generally accepted that unaided perception constitutes observation, but it is disputed to what extent objects accessible only to aided perception, like bacteria seen through a microscope or positrons detected in a cloud chamber, should be regarded as observable.

    Empirical evidence is essential to a posteriori knowledge or empirical knowledge, knowledge whose justification or falsification depends on experience or experiment. A priori knowledge, on the other hand, is seen either as innate or as justified by rational intuition and therefore as not dependent on empirical evidence. Rationalism fully accepts that there is knowledge a priori, which is either outright rejected by empiricism or accepted only in a restricted way as knowledge of relations between our concepts but not as pertaining to the external world.

    Scientific evidence is closely related to empirical evidence but not all forms of empirical evidence meet the standards dictated by scientific methods. Sources of empirical evidence are sometimes divided into observation and experimentation, the difference being that only experimentation involves manipulation or intervention: phenomena are actively created instead of being passively observed.

    Background

    The concept of evidence is of central importance in epistemology and in philosophy of science but plays different roles in these two fields. In epistemology, evidence is what justifies beliefs or what determines whether holding a certain doxastic attitude is rational. For example, the olfactory experience of smelling smoke justifies or makes it rational to hold the belief that something is burning. It is usually held that for justification to work, the evidence has to be possessed by the believer. The most straightforward way to account for this type of evidence possession is to hold that evidence consists of the private mental states possessed by the believer.

    Some philosophers restrict evidence even further, for example, to only conscious, propositional or factive mental states. Restricting evidence to conscious mental states has the implausible consequence that many simple everyday beliefs would be unjustified. This is why it is more common to hold that all kinds of mental states, including stored but currently unconscious beliefs, can act as evidence.Various of the roles played by evidence in reasoning, for example, in explanatory, probabilistic and deductive reasoning, suggest that evidence has to be propositional in nature, i.e. that it is correctly expressed by propositional attitude verbs like “believe” together with a that-clause, like “that something is burning”. But it runs counter to the common practice of treating non-propositional sense-experiences, like bodily pains, as evidence. Its defenders sometimes combine it with the view that evidence has to be factive, i.e. that only attitudes towards true propositions constitute evidence. In this view, there is no misleading evidence. The olfactory experience of smoke would count as evidence if it was produced by a fire but not if it was produced by a smoke generator. This position has problems in explaining why it is still rational for the subject to believe that there is a fire even though the olfactory experience cannot be considered evidence.

    In philosophy of science, evidence is understood as that which confirms or disconfirms scientific hypotheses and arbitrates between competing theories. Measurements of Mercury’s “anomalous” orbit, for example, constitute evidence that plays the role of neutral arbiter between Newton’s and Einstein’s theory of gravitation by confirming Einstein’s theory. For scientific consensus, it is central that evidence is public and uncontroversial, like observable physical objects or events and unlike private mental states.This way it can act as a shared ground for proponents of competing theories. Two issues threatening this role are the problem of underdetermination and theory-ladenness. The problem of underdetermination concerns the fact that the available evidence often provides equal support to either theory and therefore cannot arbitrate between them.Theory-ladenness refers to the idea that evidence already includes theoretical assumptions. These assumptions can hinder it from acting as neutral arbiter. It can also lead to a lack of shared evidence if different scientists do not share these assumptions. Thomas Kuhn is an important advocate of the position that theory-ladenness concerning scientific paradigms plays a central role in science.

    Definition

    A thing is evidence for a proposition if it epistemically supports this proposition or indicates that the supported proposition is true. Evidence is empirical if it is constituted by or accessible to sensory experience. There are various competing theories about the exact definition of the terms evidence and empirical. Different fields, like epistemology, the sciences or legal systems, often associate different concepts with these terms. An important distinction among theories of evidence is whether they identify evidence with private mental states or with public physical objects. Concerning the term empirical, there is a dispute about where to draw the line between observable or empirical objects in contrast to unobservable or merely theoretical objects.

    The traditional view proposes that evidence is empirical if it is constituted by or accessible to sensory experience. This involves experiences arising from the stimulation of the sense organs, like visual or auditory experiences, but the term is often used in a wider sense including memories and introspection. It is usually seen as excluding purely intellectual experiences, like rational insights or intuitions used to justify basic logical or mathematical principles.The terms empirical and observable are closely related and sometimes used as synonyms.

    There is an active debate in contemporary philosophy of science as to what should be regarded as observable or empirical in contrast to unobservable or merely theoretical objects. There is general consensus that everyday objects like books or houses are observable since they are accessible via unaided perception, but disagreement starts for objects that are only accessible through aided perception. This includes using telescopes to study distant galaxies, microscopes to study bacteria or using cloud chambers to study positrons.So the question is whether distant galaxies, bacteria or positrons should be regarded as observable or merely theoretical objects. Some even hold that any measurement process of an entity should be considered an observation of this entity. In this sense, the interior of the Sun is observable since neutrinos originating there can be detected. The difficulty with this debate is that there is a continuity of cases going from looking at something with the naked eye, through a window, through a pair of glasses, through a microscope, etc. Because of this continuity, drawing the line between any two adjacent cases seems to be arbitrary. One way to avoid these difficulties is to hold that it is a mistake to identify the empirical with what is observable or sensible. Instead, it has been suggested that empirical evidence can include unobservable entities as long as they are detectable through suitable measurements. A problem with this approach is that it is rather far from the original meaning of “empirical”, which contains the reference to experience.

    Related concepts

    Knowledge a posteriori and a priori

    Knowledge or the justification of a belief is said to be a posteriori if it is based on empirical evidence. A posteriori refers to what depends on experience (what comes after experience), in contrast to a priori, which stands for what is independent of experience (what comes before experience). For example, the proposition that “all bachelors are unmarried” is knowable a priori since its truth only depends on the meanings of the words used in the expression. The proposition “some bachelors are happy”, on the other hand, is only knowable a posteriori since it depends on experience of the world as its justifier. Immanuel Kant held that the difference between a posteriori and a priori is tantamount to the distinction between empirical and non-empirical knowledge.

    Two central questions for this distinction concern the relevant sense of “experience” and of “dependence”. The paradigmatic justification of knowledge a posteriori consists in sensory experience, but other mental phenomena, like memory or introspection, are also usually included in it. But purely intellectual experiences, like rational insights or intuitions used to justify basic logical or mathematical principles, are normally excluded from it. There are different senses in which knowledge may be said to depend on experience. In order to know a proposition, the subject has to be able to entertain this proposition, i.e. possess the relevant concepts. For example, experience is necessary to entertain the proposition “if something is red all over then it is not green all over” because the terms “red” and “green” have to be acquired this way. But the sense of dependence most relevant to empirical evidence concerns the status of justification of a belief. So experience may be needed to acquire the relevant concepts in the example above, but once these concepts are possessed, no further experience providing empirical evidence is needed to know that the proposition is true, which is why it is considered to be justified a priori.

    Empiricism and rationalism

    In its strictest sense, empiricism is the view that all knowledge is based on experience or that all epistemic justification arises from empirical evidence. This stands in contrast to the rationalist view, which holds that some knowledge is independent of experience, either because it is innate or because it is justified by reason or rational reflection alone. Expressed through the distinction between knowledge a priori and a posteriori from the previous section, rationalism affirms that there is knowledge a priori, which is denied by empiricism in this strict form. One difficulty for empiricists is to account for the justification of knowledge pertaining to fields like mathematics and logic, for example, that 3 is a prime number or that modus ponens is a valid form of deduction. The difficulty is due to the fact that there seems to be no good candidate of empirical evidence that could justify these beliefs. Such cases have prompted empiricists to allow for certain forms of knowledge a priori, for example, concerning tautologies or relations between our concepts. These concessions preserve the spirit of empiricism insofar as the restriction to experience still applies to knowledge about the external world. In some fields, like metaphysics or ethics, the choice between empiricism and rationalism makes a difference not just for how a given claim is justified but for whether it is justified at all. This is best exemplified in metaphysics, where empiricists tend to take a skeptical position, thereby denying the existence of metaphysical knowledge, while rationalists seek justification for metaphysical claims in metaphysical intuitions.

    Scientific evidence

    Scientific evidence is closely related to empirical evidence. Some theorists, like Carlos Santana, have argued that there is a sense in which not all empirical evidence constitutes scientific evidence. One reason for this is that the standards or criteria that scientists apply to evidence exclude certain evidence that is legitimate in other contexts. For example, anecdotal evidence from a friend about how to treat a certain disease constitutes empirical evidence that this treatment works but would not be considered scientific evidence. Others have argued that the traditional empiricist definition of empirical evidence as perceptual evidence is too narrow for much of scientific practice, which uses evidence from various kinds of non-perceptual equipment.

    Central to scientific evidence is that it was arrived at by following scientific method in the context of some scientific theory. But people rely on various forms of empirical evidence in their everyday lives that have not been obtained this way and therefore do not qualify as scientific evidence. One problem with non-scientific evidence is that it is less reliable, for example, due to cognitive biases like the anchoring effect, in which information obtained earlier is given more weight, although science done poorly is also subject to such biases, as in the example of p-hacking.

    Observation, experimentation and scientific method

    In the philosophy of science, it is sometimes held that there are two sources of empirical evidence: observation and experimentation. The idea behind this distinction is that only experimentation involves manipulation or intervention: phenomena are actively created instead of being passively observed. For example, inserting viral DNA into a bacterium is a form of experimentation while studying planetary orbits through a telescope belongs to mere observation. In these cases, the mutated DNA was actively produced by the biologist while the planetary orbits are independent of the astronomer observing them. Applied to the history of science, it is sometimes held that ancient science is mainly observational while the emphasis on experimentation is only present in modern science and responsible for the scientific revolution. This is sometimes phrased through the expression that modern science actively “puts questions to nature”. This distinction also underlies the categorization of sciences into experimental sciences, like physics, and observational sciences, like astronomy. While the distinction is relatively intuitive in paradigmatic cases, it has proven difficult to give a general definition of “intervention” applying to all cases, which is why it is sometimes outright rejected.

    Empirical evidence is required for a hypothesis to gain acceptance in the scientific community. Normally, this validation is achieved by the scientific method of forming a hypothesis, experimental design, peer review, reproduction of results, conference presentation, and journal publication. This requires rigorous communication of hypothesis (usually expressed in mathematics), experimental constraints and controls (expressed in terms of standard experimental apparatus), and a common understanding of measurement. In the scientific context, the term semi-empirical is used for qualifying theoretical methods that use, in part, basic axioms or postulated scientific laws and experimental results. Such methods are opposed to theoretical ab initio methods, which are purely deductive and based on first principles. Typical examples of both ab initio and semi-empirical methods can be found in computational chemistry.

  • MAMIL Meaning

    Mamil (or MAMIL) is an acronym and a pejorative term for a “middle-aged man in Lycra” – that is, men who ride an expensive racing bicycle for leisure, while wearing body-hugging jerseys and bicycle shorts.

    The word was reportedly coined by British marketing research firm Mintel in 2010. It gained further popularity in the United Kingdom with the success of Bradley Wiggins in the 2012 Tour de France and at the 2012 Summer Olympics, held in London. The British UCI World Championships victories in recent years have also spurred interest in cycling in the UK.

    In Australia the popularity of this sort of cycling has been associated with the Tour Down Under and the 2011 Tour de France winner Cadel Evans. Former Prime Minister Tony Abbott has been described as a “mamil”

    And in Slovakia, for example, the popularity of racing cycling and wearing colorful Lycra on the roads rose after Peter Sagan begun winning in Tour de France and World championships.

    Buying an expensive road bicycle has been described as a more healthy and affordable response to a midlife crisis than buying an expensive sports car.

    There are documentaries investigating this cycling culture. MAMIL is the title of a one-man play by New Zealand playwright Greg Cooper, written for actor Mark Hadlow. It is also the title of a feature-length documentary directed by Nickolas Bird and produced by Bird, Eleanor Sharpe and Mark Bird.

    Thirty or 40 years ago, people would ride a bike for economic reasons, but our research suggests that nowadays a bicycle is more a lifestyle addition, a way of demonstrating how affluent you are.

    Spring will usually bring Mamils out of hibernation in search of fresh Lycra and carbon fiber – their staple diet.

  • Scientific method

    The scientific method is an empirical method for acquiring knowledge that has been referred to while doing science since at least the 17th century. Historically, it was developed through the centuries from the ancient and medieval world. The scientific method involves careful observation coupled with rigorous skepticism, because cognitive assumptions can distort the interpretation of the observation. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results.

    Although procedures vary across fields, the underlying process is often similar. In more detail: the scientific method involves making conjectures (hypothetical explanations), predicting the logical consequences of hypothesis, then carrying out experiments or empirical observations based on those predictions. A hypothesis is a conjecture based on knowledge obtained while seeking answers to the question. Hypotheses can be very specific or broad but must be falsifiable, implying that it is possible to identify a possible outcome of an experiment or observation that conflicts with predictions deduced from the hypothesis; otherwise, the hypothesis cannot be meaningfully tested.

    While the scientific method is often presented as a fixed sequence of steps, it actually represents a set of general principles. Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always in the same order.Numerous discoveries have not followed the textbook model of the scientific method and chance has played a role, for instance.

    History

    The history of the scientific method considers changes in the methodology of scientific inquiry, not the history of science itself. The development of rules for scientific reasoning has not been straightforward; the scientific method has been the subject of intense and recurring debate throughout the history of science, and eminent natural philosophers and scientists have argued for the primacy of various approaches to establishing scientific knowledge.

    Different early expressions of empiricism and the scientific method can be found throughout history, for instance with the ancient Stoics, Aristotle, Epicurus, Alhazen, Avicenna, Al-Biruni, Roger Bacon, and William of Ockham.

    In the scientific revolution of the 16th and 17th centuries, some of the most important developments were the furthering of empiricism by Francis Bacon and Robert Hooke, the rationalist approach described by René Descartes, and inductivism, brought to particular prominence by Isaac Newton and those who followed him. Experiments were advocated by Francis Bacon and performed by Giambattista della Porta, Johannes Kepler, and Galileo Galilei. There was particular development aided by theoretical works by the skeptic Francisco Sanches, by idealists as well as empiricists John Locke, George Berkeley, and David Hume. C. S. Peirce formulated the hypothetico-deductive model in the 20th century, and the model has undergone significant revision since.

    The term “scientific method” emerged in the 19th century, as a result of significant institutional development of science, and terminologies establishing clear boundaries between science and non-science, such as “scientist” and “pseudoscience”. Throughout the 1830s and 1850s, when Baconianism was popular, naturalists like William Whewell, John Herschel, and John Stuart Mill engaged in debates over “induction” and “facts,” and were focused on how to generate knowledge. In the late 19th and early 20th centuries, a debate over realism vs. antirealism was conducted as powerful scientific theories extended beyond the realm of the observable.

    Modern use and critical thought

    The term “scientific method” came into popular use in the twentieth century; Dewey’s 1910 book, How We Think, inspired popular guidelines.It appeared in dictionaries and science textbooks, although there was little consensus on its meaning. Although there was growth through the middle of the twentieth century, by the 1960s and 1970s numerous influential philosophers of science such as Thomas Kuhn and Paul Feyerabend had questioned the universality of the “scientific method,” and largely replaced the notion of science as a homogeneous and universal method with that of it being a heterogeneous and local practice. In particular, Paul Feyerabend, in the 1975 first edition of his book Against Method, argued against there being any universal rules of science; Karl Popper, and Gauch 2003,[6] disagreed with Feyerabend’s claim.

    Later stances include physicist Lee Smolin’s 2013 essay “There Is No Scientific Method”, in which he espouses two ethical principles, and historian of science Daniel Thurs’ chapter in the 2015 book Newton’s Apple and Other Myths about Science, which concluded that the scientific method is a myth or, at best, an idealization. As myths are beliefs, they are subject to the narrative fallacy, as pointed out by Taleb. Philosophers Robert Nola and Howard Sankey, in their 2007 book Theories of Scientific Method, said that debates over the scientific method continue, and argued that Feyerabend, despite the title of Against Method, accepted certain rules of method and attempted to justify those rules with a meta methodology. Staddon (2017) argues it is a mistake to try following rules in the absence of an algorithmic scientific method; in that case, “science is best understood through examples”.But algorithmic methods, such as disproof of existing theory by experiment have been used since Alhacen (1027) and his Book of Optics and Galileo (1638) and his Two New Sciences, and The Assayer, which still stand as scientific method.

    Elements of inquiry

    Overview

    The scientific method is the process by which science is carried out. As in other areas of inquiry, science (through the scientific method) can build on previous knowledge, and unify understanding of its studied topics over time. This model can be seen to underlie the scientific revolution.

    The overall process involves making conjectures (hypotheses), predicting their logical consequences, then carrying out experiments based on those predictions to determine whether the original conjecture was correct. However, there are difficulties in a formulaic statement of method. Though the scientific method is often presented as a fixed sequence of steps, these actions are more accurately general principles. Not all steps take place in every scientific inquiry (nor to the same degree), and they are not always done in the same order.

    Factors of scientific inquiry

    There are different ways of outlining the basic method used for scientific inquiry. The scientific community and philosophers of science generally agree on the following classification of method components. These methodological elements and organization of procedures tend to be more characteristic of experimental sciences than social sciences. Nonetheless, the cycle of formulating hypotheses, testing and analyzing the results, and formulating new hypotheses, will resemble the cycle described below.The scientific method is an iterative, cyclical process through which information is continually revised. It is generally recognized to develop advances in knowledge through the following elements, in varying combinations or contributions :

    Characterizations (observations, definitions, and measurements of the subject of inquiry)
    Hypotheses (theoretical, hypothetical explanations of observations and measurements of the subject)
    Predictions (inductive and deductive reasoning from the hypothesis or theory)
    Experiments (tests of all of the above)
    Each element of the scientific method is subject to peer review for possible mistakes. These activities do not describe all that scientists do but apply mostly to experimental sciences (e.g., physics, chemistry, biology, and psychology). The elements above are often taught in the educational system as “the scientific method”.

    The scientific method is not a single recipe: it requires intelligence, imagination, and creativity. In this sense, it is not a mindless set of standards and procedures to follow but is rather an ongoing cycle, constantly developing more useful, accurate, and comprehensive models and methods. For example, when Einstein developed the Special and General Theories of Relativity, he did not in any way refute or discount Newton’s Principia. On the contrary, if the astronomically massive, the feather-light, and the extremely fast are removed from Einstein’s theories – all phenomena Newton could not have observed – Newton’s equations are what remain. Einstein’s theories are expansions and refinements of Newton’s theories and, thus, increase confidence in Newton’s work.

    An iterative, pragmatic scheme of the four points above is sometimes offered as a guideline for proceeding:

    Define a question
    Gather information and resources (observe)
    Form an explanatory hypothesis
    Test the hypothesis by performing an experiment and collecting data in a reproducible manner
    Analyze the data
    Interpret the data and draw conclusions that serve as a starting point for a new hypothesis
    Publish results
    Retest (frequently done by other scientists)
    The iterative cycle inherent in this step-by-step method goes from point 3 to 6 and back to 3 again.

    While this schema outlines a typical hypothesis/testing method, many philosophers, historians, and sociologists of science, including Paul Feyerabend, claim that such descriptions of scientific method have little relation to the ways that science is actually practiced.

    Characterizations

    The basic elements of the scientific method are illustrated by the following example (which occurred from 1944 to 1953) from the discovery of the structure of DNA (marked with DNA label and indented).

    DNA label In 1950, it was known that genetic inheritance had a mathematical description, starting with the studies of Gregor Mendel, and that DNA contained genetic information (Oswald Avery’s transforming principle). But the mechanism of storing genetic information (i.e., genes) in DNA was unclear. Researchers in Bragg’s laboratory at Cambridge University made X-ray diffraction pictures of various molecules, starting with crystals of salt, and proceeding to more complicated substances. Using clues painstakingly assembled over decades, beginning with its chemical composition, it was determined that it should be possible to characterize the physical structure of DNA, and the X-ray images would be the vehicle.

    The scientific method depends upon increasingly sophisticated characterizations of the subjects of investigation. (The subjects can also be called unsolved problems or the unknowns.) For example, Benjamin Franklin conjectured, correctly, that St. Elmo’s fire was electrical in nature, but it has taken a long series of experiments and theoretical changes to establish this. While seeking the pertinent properties of the subjects, careful thought may also entail some definitions and observations; these observations often demand careful measurements and/or counting can take the form of expansive empirical research.

    A scientific question can refer to the explanation of a specific observation, as in “Why is the sky blue?” but can also be open-ended, as in “How can I design a drug to cure this particular disease?” This stage frequently involves finding and evaluating evidence from previous experiments, personal scientific observations or assertions, as well as the work of other scientists. If the answer is already known, a different question that builds on the evidence can be posed. When applying the scientific method to research, determining a good question can be very difficult and it will affect the outcome of the investigation.

    The systematic, careful collection of measurements or counts of relevant quantities is often the critical difference between pseudo-sciences, such as alchemy, and science, such as chemistry or biology. Scientific measurements are usually tabulated, graphed, or mapped, and statistical manipulations, such as correlation and regression, performed on them. The measurements might be made in a controlled setting, such as a laboratory, or made on more or less inaccessible or unmanipulatable objects such as stars or human populations. The measurements often require specialized scientific instruments such as thermometers, spectroscopes, particle accelerators, or voltmeters, and the progress of a scientific field is usually intimately tied to their invention and improvement.

    I am not accustomed to saying anything with certainty after only one or two observations.

    — Andreas Vesalius (1546)

    Definition

    The scientific definition of a term sometimes differs substantially from its natural language usage. For example, mass and weight overlap in meaning in common discourse, but have distinct meanings in mechanics. Scientific quantities are often characterized by their units of measure which can later be described in terms of conventional physical units when communicating the work.

    New theories are sometimes developed after realizing certain terms have not previously been sufficiently clearly defined. For example, Albert Einstein’s first paper on relativity begins by defining simultaneity and the means for determining length. These ideas were skipped over by Isaac Newton with, “I do not define time, space, place and motion, as being well known to all.” Einstein’s paper then demonstrates that they (viz., absolute time and length independent of motion) were approximations. Francis Crick cautions us that when characterizing a subject, however, it can be premature to define something when it remains ill-understood. In Crick’s study of consciousness, he actually found it easier to study awareness in the visual system, rather than to study free will, for example. His cautionary example was the gene; the gene was much more poorly understood before Watson and Crick’s pioneering discovery of the structure of DNA; it would have been counterproductive to spend much time on the definition of the gene, before them.

    Hypothesis development

    DNA label Linus Pauling proposed that DNA might be a triple helix. This hypothesis was also considered by Francis Crick and James D. Watson but discarded. When Watson and Crick learned of Pauling’s hypothesis, they understood from existing data that Pauling was wrong. and that Pauling would soon admit his difficulties with that structure.

    A hypothesis is a suggested explanation of a phenomenon, or alternately a reasoned proposal suggesting a possible correlation between or among a set of phenomena. Normally, hypotheses have the form of a mathematical model. Sometimes, but not always, they can also be formulated as existential statements, stating that some particular instance of the phenomenon being studied has some characteristic and causal explanations, which have the general form of universal statements, stating that every instance of the phenomenon has a particular characteristic.

    Scientists are free to use whatever resources they have – their own creativity, ideas from other fields, inductive reasoning, Bayesian inference, and so on – to imagine possible explanations for a phenomenon under study. Albert Einstein once observed that “there is no logical bridge between phenomena and their theoretical principles.” Charles Sanders Peirce, borrowing a page from Aristotle (Prior Analytics, 2.25) described the incipient stages of inquiry, instigated by the “irritation of doubt” to venture a plausible guess, as abductive reasoning.II,p.290 The history of science is filled with stories of scientists claiming a “flash of inspiration”, or a hunch, which then motivated them to look for evidence to support or refute their idea. Michael Polanyi made such creativity the centerpiece of his discussion of methodology.

    William Glen observes that

    the success of a hypothesis, or its service to science, lies not simply in its perceived “truth”, or power to displace, subsume or reduce a predecessor idea, but perhaps more in its ability to stimulate the research that will illuminate … bald suppositions and areas of vagueness.

    — William Glen, The Mass-Extinction Debates


    In general, scientists tend to look for theories that are “elegant” or “beautiful”. Scientists often use these terms to refer to a theory that is following the known facts but is nevertheless relatively simple and easy to handle. Occam’s Razor serves as a rule of thumb for choosing the most desirable amongst a group of equally explanatory hypotheses.

    To minimize the confirmation bias that results from entertaining a single hypothesis, strong inference emphasizes the need for entertaining multiple alternative hypotheses, and avoiding artifacts.

    Predictions from the hypothesis

    DNA label James D. Watson, Francis Crick, and others hypothesized that DNA had a helical structure. This implied that DNA’s X-ray diffraction pattern would be ‘x shaped’. This prediction followed from the work of Cochran, Crick and Vand (and independently by Stokes). The Cochran-Crick-Vand-Stokes theorem provided a mathematical explanation for the empirical observation that diffraction from helical structures produces x-shaped patterns. In their first paper, Watson and Crick also noted that the double helix structure they proposed provided a simple mechanism for DNA replication, writing, “It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material”.

    Any useful hypothesis will enable predictions, by reasoning including deductive reasoning. It might predict the outcome of an experiment in a laboratory setting or the observation of a phenomenon in nature. The prediction can also be statistical and deal only with probabilities.

    It is essential that the outcome of testing such a prediction be currently unknown. Only in this case does a successful outcome increase the probability that the hypothesis is true. If the outcome is already known, it is called a consequence and should have already been considered while formulating the hypothesis.

    If the predictions are not accessible by observation or experience, the hypothesis is not yet testable and so will remain to that extent unscientific in a strict sense. A new technology or theory might make the necessary experiments feasible. For example, while a hypothesis on the existence of other intelligent species may be convincing with scientifically based speculation, no known experiment can test this hypothesis. Therefore, science itself can have little to say about the possibility. In the future, a new technique may allow for an experimental test and the speculation would then become part of accepted science.

    For example, Einstein’s theory of general relativity makes several specific predictions about the observable structure of spacetime, such as that light bends in a gravitational field, and that the amount of bending depends in a precise way on the strength of that gravitational field. Arthur Eddington’s observations made during a 1919 solar eclipse supported General Relativity rather than Newtonian gravitation.

    Experiments

    DNA label Watson and Crick showed an initial (and incorrect) proposal for the structure of DNA to a team from King’s College London – Rosalind Franklin, Maurice Wilkins, and Raymond Gosling. Franklin immediately spotted the flaws which concerned the water content. Later Watson saw Franklin’s photo 51, a detailed X-ray diffraction image, which showed an X-shape and was able to confirm the structure was helical.

    Once predictions are made, they can be sought by experiments. If the test results contradict the predictions, the hypotheses which entailed them are called into question and become less tenable. Sometimes the experiments are conducted incorrectly or are not very well designed when compared to a crucial experiment. If the experimental results confirm the predictions, then the hypotheses are considered more likely to be correct, but might still be wrong and continue to be subject to further testing. The experimental control is a technique for dealing with observational error. This technique uses the contrast between multiple samples, or observations, or populations, under differing conditions, to see what varies or what remains the same. We vary the conditions for the acts of measurement, to help isolate what has changed. Mill’s canons can then help us figure out what the important factor is. Factor analysis is one technique for discovering the important factor in an effect.

    Depending on the predictions, the experiments can have different shapes. It could be a classical experiment in a laboratory setting, a double-blind study or an archaeological excavation. Even taking a plane from New York to Paris is an experiment that tests the aerodynamical hypotheses used for constructing the plane.

    These institutions thereby reduce the research function to a cost/benefit, which is expressed as money, and the time and attention of the researchers to be expended, in exchange for a report to their constituents. Current large instruments, such as CERN’s Large Hadron Collider (LHC), or LIGO, or the National Ignition Facility (NIF), or the International Space Station (ISS), or the James Webb Space Telescope (JWST), entail expected costs of billions of dollars, and timeframes extending over decades. These kinds of institutions affect public policy, on a national or even international basis, and the researchers would require shared access to such machines and their adjunct infrastructure.

    Scientists assume an attitude of openness and accountability on the part of those experimenting. Detailed record-keeping is essential, to aid in recording and reporting on the experimental results, and supports the effectiveness and integrity of the procedure. They will also assist in reproducing the experimental results, likely by others. Traces of this approach can be seen in the work of Hipparchus (190–120 BCE), when determining a value for the precession of the Earth, while controlled experiments can be seen in the works of al-Battani (853–929 CE) and Alhazen (965–1039 CE).

    Communication and iteration

    DNA label Watson and Crick then produced their model, using this information along with the previously known information about DNA’s composition, especially Chargaff’s rules of base pairing. After considerable fruitless experimentation, being discouraged by their superior from continuing, and numerous false starts,Watson and Crick were able to infer the essential structure of DNA by concrete modeling of the physical shapes of the nucleotides which comprise it.They were guided by the bond lengths which had been deduced by Linus Pauling and by Rosalind Franklin’s X-ray diffraction images.

    The scientific method is iterative. At any stage, it is possible to refine its accuracy and precision, so that some consideration will lead the scientist to repeat an earlier part of the process. Failure to develop an interesting hypothesis may lead a scientist to re-define the subject under consideration. Failure of a hypothesis to produce interesting and testable predictions may lead to reconsideration of the hypothesis or of the definition of the subject. Failure of an experiment to produce interesting results may lead a scientist to reconsider the experimental method, the hypothesis, or the definition of the subject.

    This manner of iteration can span decades and sometimes centuries. Published papers can be built upon. For example: By 1027, Alhazen, based on his measurements of the refraction of light, was able to deduce that outer space was less dense than air, that is: “the body of the heavens is rarer than the body of air”. In 1079 Ibn Mu’adh’s Treatise On Twilight was able to infer that Earth’s atmosphere was 50 miles thick, based on atmospheric refraction of the sun’s rays.

    This is why the scientific method is often represented as circular – new information leads to new characterisations, and the cycle of science continues. Measurements collected can be archived, passed onwards and used by others. Other scientists may start their own research and enter the process at any stage. They might adopt the characterization and formulate their own hypothesis, or they might adopt the hypothesis and deduce their own predictions. Often the experiment is not done by the person who made the prediction, and the characterization is based on experiments done by someone else. Published results of experiments can also serve as a hypothesis predicting their own reproducibility.

    Confirmation

    Science is a social enterprise, and scientific work tends to be accepted by the scientific community when it has been confirmed. Crucially, experimental and theoretical results must be reproduced by others within the scientific community. Researchers have given their lives for this vision; Georg Wilhelm Richmann was killed by ball lightning (1753) when attempting to replicate the 1752 kite-flying experiment of Benjamin Franklin.

    If an experiment cannot be repeated to produce the same results, this implies that the original results might have been in error. As a result, it is common for a single experiment to be performed multiple times, especially when there are uncontrolled variables or other indications of experimental error. For significant or surprising results, other scientists may also attempt to replicate the results for themselves, especially if those results would be important to their own work. Replication has become a contentious issue in social and biomedical science where treatments are administered to groups of individuals. Typically an experimental group gets the treatment, such as a drug, and the control group gets a placebo. John Ioannidis in 2005 pointed out that the method being used has led to many findings that cannot be replicated.

    The process of peer review involves the evaluation of the experiment by experts, who typically give their opinions anonymously. Some journals request that the experimenter provide lists of possible peer reviewers, especially if the field is highly specialized. Peer review does not certify the correctness of the results, only that, in the opinion of the reviewer, the experiments themselves were sound (based on the description supplied by the experimenter). If the work passes peer review, which occasionally may require new experiments requested by the reviewers, it will be published in a peer-reviewed scientific journal. The specific journal that publishes the results indicates the perceived quality of the work.

    Scientists typically are careful in recording their data, a requirement promoted by Ludwik Fleck (1896–1961) and others. Though not typically required, they might be requested to supply this data to other scientists who wish to replicate their original results (or parts of their original results), extending to the sharing of any experimental samples that may be difficult to obtain. To protect against bad science and fraudulent data, government research-granting agencies such as the National Science Foundation, and science journals, including Nature and Science, have a policy that researchers must archive their data and methods so that other researchers can test the data and methods and build on the research that has gone before. Scientific data archiving can be done at several national archives in the U.S. or the World Data Center.

    Foundational principles

    Honesty, openness, and falsifiability

    The unfettered principles of science are to strive for accuracy and the creed of honesty; openness already being a matter of degrees. Openness is restricted by the general rigour of scepticism. And of course the matter of non-science.

    Smolin, in 2013, espoused ethical principles rather than giving any potentially limited definition of the rules of inquiry. His ideas stand in the context of the scale of data–driven and big science, which has seen increased importance of honesty and consequently reproducibility. His thought is that science is a community effort by those who have accreditation and are working within the community. He also warns against overzealous parsimony.

    Popper previously took ethical principles even further, going as far as to ascribe value to theories only if they were falsifiable. Popper used the falsifiability criterion to demarcate a scientific theory from a theory like astrology: both “explain” observations, but the scientific theory takes the risk of making predictions that decide whether it is right or wrong:

    “Those among us who are unwilling to expose their ideas to the hazard of refutation do not take part in the game of science.”

    — Karl Popper, The Logic of Scientific Discovery (2002 [1935])

    Theory’s interactions with observation

    Science has limits. Those limits are usually deemed to be answers to questions that aren’t in science’s domain, such as faith. Science has other limits as well, as it seeks to make true statements about reality. The nature of truth and the discussion on how scientific statements relate to reality is best left to the article on the philosophy of science here. More immediately topical limitations show themselves in the observation of reality.

    It is the natural limitations of scientific inquiry that there is no pure observation as theory is required to interpret empirical data, and observation is therefore influenced by the observer’s conceptual framework. As science is an unfinished project, this does lead to difficulties. Namely, that false conclusions are drawn, because of limited information.

    An example here are the experiments of Kepler and Brahe, used by Hanson to illustrate the concept. Despite observing the same sunrise the two scientists came to different conclusions—their intersubjectivity leading to differing conclusions. Johannes Kepler used Tycho Brahe’s method of observation, which was to project the image of the Sun on a piece of paper through a pinhole aperture, instead of looking directly at the Sun. He disagreed with Brahe’s conclusion that total eclipses of the Sun were impossible because, contrary to Brahe, he knew that there were historical accounts of total eclipses. Instead, he deduced that the images taken would become more accurate, the larger the aperture—this fact is now fundamental for optical system design. Another historic example here is the discovery of Neptune, credited as being found via mathematics because previous observers didn’t know what they were looking at.

    Empiricism, rationalism, and more pragmatic views

    Scientific endeavour can be characterised as the pursuit of truths about the natural world or as the elimination of doubt about the same. The former is the direct construction of explanations from empirical data and logic, the latter the reduction of potential explanations. It was established above how the interpretation of empirical data is theory-laden, so neither approach is trivial.

    The ubiquitous element in the scientific method is empiricism, which holds that knowledge is created by a process involving observation; scientific theories generalize observations. This is in opposition to stringent forms of rationalism, which holds that knowledge is created by the human intellect; later clarified by Popper to be built on prior theory. The scientific method embodies the position that reason alone cannot solve a particular scientific problem; it unequivocally refutes claims that revelation, political or religious dogma, appeals to tradition, commonly held beliefs, common sense, or currently held theories pose the only possible means of demonstrating truth.

    In 1877, C. S. Peirce characterized inquiry in general not as the pursuit of truth per se but as the struggle to move from irritating, inhibitory doubts born of surprises, disagreements, and the like, and to reach a secure belief, the belief being that on which one is prepared to act. His pragmatic views framed scientific inquiry as part of a broader spectrum and as spurred, like inquiry generally, by actual doubt, not mere verbal or “hyperbolic doubt”, which he held to be fruitless. This “hyperbolic doubt” Peirce argues against here is of course just another name for Cartesian doubt associated with René Descartes. It is a methodological route to certain knowledge by identifying what can’t be doubted.

    A strong formulation of the scientific method is not always aligned with a form of empiricism in which the empirical data is put forward in the form of experience or other abstracted forms of knowledge as in current scientific practice the use of scientific modelling and reliance on abstract typologies and theories is normally accepted. In 2010, Hawking suggested that physics’ models of reality should simply be accepted where they prove to make useful predictions. He calls the concept model-dependent realism.

    Rationality

    Rationality embodies the essence of sound reasoning, a cornerstone not only in philosophical discourse but also in the realms of science and practical decision-making. According to the traditional viewpoint, rationality serves a dual purpose: it governs beliefs, ensuring they align with logical principles, and it steers actions, directing them towards coherent and beneficial outcomes. This understanding underscores the pivotal role of reason in shaping our understanding of the world and in informing our choices and behaviours. The following section will first explore beliefs and biases, and then get to the rational reasoning most associated with the sciences.

    Beliefs and biases

    Scientific methodology often directs that hypotheses be tested in controlled conditions wherever possible. This is frequently possible in certain areas, such as in the biological sciences, and more difficult in other areas, such as in astronomy.

    The practice of experimental control and reproducibility can have the effect of diminishing the potentially harmful effects of circumstance, and to a degree, personal bias. For example, pre-existing beliefs can alter the interpretation of results, as in confirmation bias; this is a heuristic that leads a person with a particular belief to see things as reinforcing their belief, even if another observer might disagree (in other words, people tend to observe what they expect to observe).

    The action of thought is excited by the irritation of doubt, and ceases when belief is attained.

    — C.S. Peirce, How to Make Our Ideas Clear (1877)


    A historical example is the belief that the legs of a galloping horse are splayed at the point when none of the horse’s legs touch the ground, to the point of this image being included in paintings by its supporters. However, the first stop-action pictures of a horse’s gallop by Eadweard Muybridge showed this to be false, and that the legs are instead gathered together.

    Another important human bias that plays a role is a preference for new, surprising statements (see Appeal to novelty), which can result in a search for evidence that the new is true. Poorly attested beliefs can be believed and acted upon via a less rigorous heuristic.

    Goldhaber and Nieto published in 2010 the observation that if theoretical structures with “many closely neighboring subjects are described by connecting theoretical concepts, then the theoretical structure acquires a robustness which makes it increasingly hard – though certainly never impossible – to overturn”. When a narrative is constructed its elements become easier to believe.

    Fleck (1979), p. 27 notes “Words and ideas are originally phonetic and mental equivalences of the experiences coinciding with them. … Such proto-ideas are at first always too broad and insufficiently specialized. … Once a structurally complete and closed system of opinions consisting of many details and relations has been formed, it offers enduring resistance to anything that contradicts it”. Sometimes, these relations have their elements assumed a priori, or contain some other logical or methodological flaw in the process that ultimately produced them. Donald M. MacKay has analyzed these elements in terms of limits to the accuracy of measurement and has related them to instrumental elements in a category of measurement.

    Deductive and inductive reasoning

    The idea of there being two opposed justifications for truth has shown up throughout the history of scientific method as analysis versus synthesis, non-ampliative/ampliative, or even confirmation and verification. (And there are other kinds of reasoning.) One to use what is observed to build towards fundamental truths – and the other to derive from those fundamental truths more specific principles.

    Deductive reasoning is the building of knowledge based on what has been shown to be true before. It requires the assumption of fact established prior, and, given the truth of the assumptions, a valid deduction guarantees the truth of the conclusion. Inductive reasoning builds knowledge not from established truth, but from a body of observations. It requires stringent scepticism regarding observed phenomena, because cognitive assumptions can distort the interpretation of initial perceptions.

    An example for how inductive and deductive reasoning works can be found in the history of gravitational theory. It took thousands of years of measurements, from the Chaldean, Indian, Persian, Greek, Arabic, and European astronomers, to fully record the motion of planet Earth.Kepler(and others) were then able to build their early theories by generalizing the collected data inductively, and Newton was able to unify prior theory and measurements into the consequences of his laws of motion in 1727.

    Another common example of inductive reasoning is the observation of a counterexample to current theory inducing the need for new ideas. Le Verrier in 1859 pointed out problems with the perihelion of Mercury that showed Newton’s theory to be at least incomplete. The observed difference of Mercury’s precession between Newtonian theory and observation was one of the things that occurred to Einstein as a possible early test of his theory of relativity. His relativistic calculations matched observation much more closely than Newtonian theory did. Though, today’s Standard Model of physics suggests that we still do not know at least some of the concepts surrounding Einstein’s theory, it holds to this day and is being built on deductively.

    A theory being assumed as true and subsequently built on is a common example of deductive reasoning. Theory building on Einstein’s achievement can simply state that ‘we have shown that this case fulfils the conditions under which general/special relativity applies, therefore its conclusions apply also’. If it was properly shown that ‘this case’ fulfils the conditions, the conclusion follows. An extension of this is the assumption of a solution to an open problem. This weaker kind of deductive reasoning will get used in current research, when multiple scientists or even teams of researchers are all gradually solving specific cases in working towards proving a larger theory. This often sees hypotheses being revised again and again as new proof emerges.

    This way of presenting inductive and deductive reasoning shows part of why science is often presented as being a cycle of iteration. It is important to keep in mind that that cycle’s foundations lie in reasoning, and not wholly in the following of procedure.

    Certainty, probabilities, and statistical inference

    Claims of scientific truth can be opposed in three ways: by falsifying them, by questioning their certainty, or by asserting the claim itself to be incoherent. Incoherence, here, means internal errors in logic, like stating opposites to be true; falsification is what Popper would have called the honest work of conjecture and refutation — certainty, perhaps, is where difficulties in telling truths from non-truths arise most easily.

    Measurements in scientific work are usually accompanied by estimates of their uncertainty. The uncertainty is often estimated by making repeated measurements of the desired quantity. Uncertainties may also be calculated by consideration of the uncertainties of the individual underlying quantities used. Counts of things, such as the number of people in a nation at a particular time, may also have an uncertainty due to data collection limitations. Or counts may represent a sample of desired quantities, with an uncertainty that depends upon the sampling method used and the number of samples taken.

    In the case of measurement imprecision, there will simply be a ‘probable deviation’ expressing itself in a study’s conclusions. Statistics are different. Inductive statistical generalisation will take sample data and extrapolate more general conclusions, which has to be justified — and scrutinised. It can even be said that statistical models are only ever useful, but never a complete representation of circumstances.

    In statistical analysis, expected and unexpected bias is a large factor. Research questions, the collection of data, or the interpretation of results, all are subject to larger amounts of scrutiny than in comfortably logical environments. Statistical models go through a process for validation, for which one could even say that awareness of potential biases is more important than the hard logic; errors in logic are easier to find in peer review, after all.[u] More general, claims to rational knowledge, and especially statistics, have to be put into their appropriate context. Simple statements such as ‘9 out of 10 doctors recommend’ are therefore of unknown quality because they do not justify their methodology.

    Lack of familiarity with statistical methodologies can result in erroneous conclusions. Foregoing the easy example, multiple probabilities interacting is where, for example medical professionals, have shown a lack of proper understanding. Bayes’ theorem is the mathematical principle lining out how standing probabilities are adjusted given new information. The boy or girl paradox is a common example. In knowledge representation, Bayesian estimation of mutual information between random variables is a way to measure dependence, independence, or interdependence of the information under scrutiny.

    Beyond commonly associated survey methodology of field research, the concept together with probabilistic reasoning is used to advance fields of science where research objects have no definitive states of being. For example, in statistical mechanics.

    Methods of inquiry

    Hypothetico-deductive method

    The hypothetico-deductive model, or hypothesis-testing method, or “traditional” scientific method is, as the name implies, based on the formation of hypotheses and their testing via deductive reasoning. A hypothesis stating implications, often called predictions, that are falsifiable via experiment is of central importance here, as not the hypothesis but its implications are what is tested. Basically, scientists will look at the hypothetical consequences a (potential) theory holds and prove or disprove those instead of the theory itself. If an experimental test of those hypothetical consequences shows them to be false, it follows logically that the part of the theory that implied them was false also. If they show as true however, it does not prove the theory definitively.

    The logic of this testing is what affords this method of inquiry to be reasoned deductively. The formulated hypothesis is assumed to be ‘true’, and from that ‘true’ statement implications are inferred. If the following tests show the implications to be false, it follows that the hypothesis was false also. If test show the implications to be true, new insights will be gained. It is important to be aware that a positive test here will at best strongly imply but not definitively prove the tested hypothesis, as deductive inference (A ⇒ B) is not equivalent like that; only (¬B ⇒ ¬A) is valid logic. Their positive outcomes however, as Hempel put it, provide “at least some support, some corroboration or confirmation for it”. This is why Popper insisted on fielded hypotheses to be falsifieable, as successful tests imply very little otherwise. As Gillies put it, “successful theories are those that survive elimination through falsification”.

    Deductive reasoning in this mode of inquiry will sometimes be replaced by abductive reasoning—the search for the most plausible explanation via logical inference. For example, in biology, where general laws are few, as valid deductions rely on solid presuppositions.

    Inductive method

    The inductivist approach to deriving scientific truth first rose to prominence with Francis Bacon and particularly with Isaac Newton and those who followed him. After the establishment of the HD-method, it was often put aside as something of a “fishing expedition” though. It is still valid to some degree, but today’s inductive method is often far removed from the historic approach—the scale of the data collected lending new effectiveness to the method. It is most-associated with data-mining projects or large-scale observation projects. In both these cases, it is often not at all clear what the results of proposed experiments will be, and thus knowledge will arise after the collection of data through inductive reasoning.

    Where the traditional method of inquiry does both, the inductive approach usually formulates only a research question, not a hypothesis. Following the initial question instead, a suitable “high-throughput method” of data-collection is determined, the resulting data processed and ‘cleaned up’, and conclusions drawn after. “This shift in focus elevates the data to the supreme role of revealing novel insights by themselves”.

    The advantage the inductive method has over methods formulating a hypothesis that it is essentially free of “a researcher’s preconceived notions” regarding their subject. On the other hand, inductive reasoning is always attached to a measure of certainty, as all inductively reasoned conclusions are. This measure of certainty can reach quite high degrees, though. For example, in the determination of large primes, which are used in encryption software.

    Mathematical modelling

    Mathematical modelling, or allochthonous reasoning, typically is the formulation of a hypothesis followed by building mathematical constructs that can be tested in place of conducting physical laboratory experiments. This approach has two main factors: simplification/abstraction and secondly a set of correspondence rules. The correspondence rules lay out how the constructed model will relate back to reality-how truth is derived; and the simplifying steps taken in the abstraction of the given system are to reduce factors that do not bear relevance and thereby reduce unexpected errors. These steps can also help the researcher in understanding the important factors of the system, how far parsimony can be taken until the system becomes more and more unchangeable and thereby stable. Parsimony and related principles are further explored below.

    Once this translation into mathematics is complete, the resulting model, in place of the corresponding system, can be analysed through purely mathematical and computational means. The results of this analysis are of course also purely mathematical in nature and get translated back to the system as it exists in reality via the previously determined correspondence rules—iteration following review and interpretation of the findings. The way such models are reasoned will often be mathematically deductive—but they don’t have to be. An example here are Monte-Carlo simulations. These generate empirical data “arbitrarily”, and, while they may not be able to reveal universal principles, they can nevertheless be useful.

    Scientific inquiry

    Scientific inquiry generally aims to obtain knowledge in the form of testable explanations that scientists can use to predict the results of future experiments. This allows scientists to gain a better understanding of the topic under study, and later to use that understanding to intervene in its causal mechanisms (such as to cure disease). The better an explanation is at making predictions, the more useful it frequently can be, and the more likely it will continue to explain a body of evidence better than its alternatives. The most successful explanations – those that explain and make accurate predictions in a wide range of circumstances – are often called scientific theories.

    Most experimental results do not produce large changes in human understanding; improvements in theoretical scientific understanding typically result from a gradual process of development over time, sometimes across different domains of science. Scientific models vary in the extent to which they have been experimentally tested and for how long, and in their acceptance in the scientific community. In general, explanations become accepted over time as evidence accumulates on a given topic, and the explanation in question proves more powerful than its alternatives at explaining the evidence. Often subsequent researchers re-formulate the explanations over time, or combined explanations to produce new explanations.

    Properties of scientific inquiry

    Scientific knowledge is closely tied to empirical findings and can remain subject to falsification if new experimental observations are incompatible with what is found. That is, no theory can ever be considered final since new problematic evidence might be discovered. If such evidence is found, a new theory may be proposed, or (more commonly) it is found that modifications to the previous theory are sufficient to explain the new evidence. The strength of a theory relates to how long it has persisted without major alteration to its core principles.

    Theories can also become subsumed by other theories. For example, Newton’s laws explained thousands of years of scientific observations of the planets almost perfectly. However, these laws were then determined to be special cases of a more general theory (relativity), which explained both the (previously unexplained) exceptions to Newton’s laws and predicted and explained other observations such as the deflection of light by gravity. Thus, in certain cases independent, unconnected, scientific observations can be connected, unified by principles of increasing explanatory power.

    Since new theories might be more comprehensive than what preceded them, and thus be able to explain more than previous ones, successor theories might be able to meet a higher standard by explaining a larger body of observations than their predecessors. For example, the theory of evolution explains the diversity of life on Earth, how species adapt to their environments, and many other patterns observed in the natural world; its most recent major modification was unification with genetics to form the modern evolutionary synthesis. In subsequent modifications, it has also subsumed aspects of many other fields such as biochemistry and molecular biology.

    Heuristics

    Confirmation theory

    During the course of history, one theory has succeeded another, and some have suggested further work while others have seemed content just to explain the phenomena. The reasons why one theory has replaced another are not always obvious or simple. The philosophy of science includes the question: What criteria are satisfied by a ‘good’ theory. This question has a long history, and many scientists, as well as philosophers, have considered it. The objective is to be able to choose one theory as preferable to another without introducing cognitive bias. Though different thinkers emphasize different aspects, a good theory:

    is accurate (the trivial element);
    is consistent, both internally and with other relevant currently accepted theories;
    has explanatory power, meaning its consequences extend beyond the data it is required to explain;
    has unificatory power; as in its organizing otherwise confused and isolated phenomena
    and is fruitful for further research.
    In trying to look for such theories, scientists will, given a lack of guidance by empirical evidence, try to adhere to:

    parsimony in causal explanations
    and look for invariant observations.
    Scientists will sometimes also list the very subjective criteria of “formal elegance” which can indicate multiple different things.
    The goal here is to make the choice between theories less arbitrary. Nonetheless, these criteria contain subjective elements, and should be considered heuristics rather than a definitive. Also, criteria such as these do not necessarily decide between alternative theories. Quoting Bird:

    “[Such criteria] cannot determine scientific choice. First, which features of a theory satisfy these criteria may be disputable (e.g. does simplicity concern the ontological commitments of a theory or its mathematical form?). Secondly, these criteria are imprecise, and so there is room for disagreement about the degree to which they hold. Thirdly, there can be disagreement about how they are to be weighted relative to one another, especially when they conflict.”

    It also is debatable whether existing scientific theories satisfy all these criteria, which may represent goals not yet achieved. For example, explanatory power over all existing observations is satisfied by no one theory at the moment.

    Parsimony

    The desiderata of a “good” theory have been debated for centuries, going back perhaps even earlier than Occam’s razor, which is often taken as an attribute of a good theory. Science tries to be simple. When gathered data supports multiple explanations, the most simple explanation for phenomena or the most simple formation of a theory is recommended by the principle of parsimony. Scientists go as far as to call simple proofs of complex statements beautiful.

    We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances.

    — Isaac Newton, Philosophiæ Naturalis Principia Mathematica (1723 )
    The concept of parsimony should not be held to imply complete frugality in the pursuit of scientific truth. The general process starts at the opposite end of there being a vast number of potential explanations and general disorder. An example can be seen in Paul Krugman’s process, who makes explicit to “dare to be silly”. He writes that in his work on new theories of international trade he reviewed prior work with an open frame of mind and broadened his initial viewpoint even in unlikely directions. Once he had a sufficient body of ideas, he would try to simplify and thus find what worked among what did not. Specific to Krugman here was to “question the question”. He recognised that prior work had applied erroneous models to already present evidence, commenting that “intelligent commentary was ignored”. Thus touching on the need to bridge the common bias against other circles of thought.

    Elegance

    Occam’s razor might fall under the heading of “simple elegance”, but it is arguable that parsimony and elegance pull in different directions. Introducing additional elements could simplify theory formulation, whereas simplifying a theory’s ontology might lead to increased syntactical complexity.

    Sometimes ad-hoc modifications of a failing idea may also be dismissed as lacking “formal elegance”. This appeal to what may be called “aesthetic” is hard to characterise, but essentially about a sort of familiarity. Though, argument based on “elegance” is contentious and over-reliance on familiarity will breed stagnation.

    Invariance

    Principles of invariance have been a theme in scientific writing, and especially physics, since at least the early 20th century. The basic idea here is that good structures to look for are those independent of perspective, an idea that has featured earlier of course for example in Mill’s Methods of difference and agreement—methods that would be referred back to in the context of contrast and invariance. But as tends to be the case, there is a difference between something being a basic consideration and something being given weight. Principles of invariance have only been given weight in the wake of Einstein’s theories of relativity, which reduced everything to relations and were thereby fundamentally unchangeable, unable to be varied.As David Deutsch put it in 2009: “the search for hard-to-vary explanations is the origin of all progress”.

    An example here can be found in one of Einstein’s thought experiments. The one of a lab suspended in empty space is an example of a useful invariant observation. He imagined the absence of gravity and an experimenter free floating in the lab. — If now an entity pulls the lab upwards, accelerating uniformly, the experimenter would perceive the resulting force as gravity. The entity however would feel the work needed to accelerate the lab continuously. Through this experiment Einstein was able to equate gravitational and inertial mass; something unexplained by Newton’s laws, and an early but “powerful argument for a generalised postulate of relativity”.

    The feature, which suggests reality, is always some kind of invariance of a structure independent of the aspect, the projection.

    — Max Born, ‘Physical Reality’ (1953), 149 — as quoted by Weinert (2004)
    The discussion on invariance in physics is often had in the more specific context of symmetry. The Einstein example above, in the parlance of Mill would be an agreement between two values. In the context of invariance, it is a variable that remains unchanged through some kind of transformation or change in perspective. And discussion focused on symmetry would view the two perspectives as systems that share a relevant aspect and are therefore symmetrical.

    Related principles here are falsifiability and testability. The opposite of something being hard-to-vary are theories that resist falsification—a frustration that was expressed colourfully by Wolfgang Pauli as them being “not even wrong”. The importance of scientific theories to be falsifiable finds especial emphasis in the philosophy of Karl Popper. The broader view here is testability, since it includes the former and allows for additional practical considerations.

    Philosophy and discourse

    Philosophy of science looks at the underpinning logic of the scientific method, at what separates science from non-science, and the ethic that is implicit in science. There are basic assumptions, derived from philosophy by at least one prominent scientist, that form the base of the scientific method – namely, that reality is objective and consistent, that humans have the capacity to perceive reality accurately, and that rational explanations exist for elements of the real world. These assumptions from methodological naturalism form a basis on which science may be grounded. Logical positivist, empiricist, falsificationist, and other theories have criticized these assumptions and given alternative accounts of the logic of science, but each has also itself been criticized.

    There are several kinds of modern philosophical conceptualizations and attempts at definitions of the method of science.The one attempted by the unificationists, who argue for the existence of a unified definition that is useful (or at least ‘works’ in every context of science). The pluralists, arguing degrees of science being too fractured for a universal definition of its method to by useful. And those, who argue that the very attempt at definition is already detrimental to the free flow of ideas.

    Additionally, there have been views on the social framework in which science is done, and the impact of the sciences social environment on research. Also, there is ‘scientific method’ as popularised by Dewey in How We Think (1910) and Karl Pearson in Grammar of Science (1892), as used in fairly uncritical manner in education.

    Pluralism

    Scientific pluralism is a position within the philosophy of science that rejects various proposed unities of scientific method and subject matter. Scientific pluralists hold that science is not unified in one or more of the following ways: the metaphysics of its subject matter, the epistemology of scientific knowledge, or the research methods and models that should be used. Some pluralists believe that pluralism is necessary due to the nature of science. Others say that since scientific disciplines already vary in practice, there is no reason to believe this variation is wrong until a specific unification is empirically proven. Finally, some hold that pluralism should be allowed for normative reasons, even if unity were possible in theory.

    Unificationism

    Unificationism, in science, was a central tenet of logical positivism. Different logical positivists construed this doctrine in several different ways, e.g. as a reductionist thesis, that the objects investigated by the special sciences reduce to the objects of a common, putatively more basic domain of science, usually thought to be physics; as the thesis that all theories and results of the various sciences can or ought to be expressed in a common language or “universal slang”; or as the thesis that all the special sciences share a common scientific method.

    Development of the idea has been troubled by accelerated advancement in technology that has opened up many new ways to look at the world.

    The fact that the standards of scientific success shift with time does not only make the philosophy of science difficult; it also raises problems for the public understanding of science. We do not have a fixed scientific method to rally around and defend.

    — Steven Weinberg, 1995

    Epistemological anarchism

    Paul Feyerabend examined the history of science, and was led to deny that science is genuinely a methodological process. In his book Against Method he argued that no description of scientific method could possibly be broad enough to include all the approaches and methods used by scientists, and that there are no useful and exception-free methodological rules governing the progress of science. In essence, he said that for any specific method or norm of science, one can find a historic episode where violating it has contributed to the progress of science. He jokingly suggested that, if believers in the scientific method wish to express a single universally valid rule, it should be ‘anything goes’. As has been argued before him however, this is uneconomic; problem solvers, and researchers are to be prudent with their resources during their inquiry.

    A more general inference against formalised method has been found through research involving interviews with scientists regarding their conception of method. This research indicated that scientists frequently encounter difficulty in determining whether the available evidence supports their hypotheses. This reveals that there are no straightforward mappings between overarching methodological concepts and precise strategies to direct the conduct of research.

    Education
    In science education, the idea of a general and universal scientific method has been notably influential, and numerous studies (in the US) have shown that this framing of method often forms part of both students’ and teachers’ conception of science. This convention of traditional education has been argued against by scientists, as there is a consensus that educations’ sequential elements and unified view of scientific method do not reflect how scientists actually work. Major organizations of scientists such as the American Association for the Advancement of Science (AAAS) consider the sciences to be a part of the liberal arts traditions of learning and proper understating of science includes understanding of philosophy and history, not just science in isolation.

    How the sciences make knowledge has been taught in the context of “the” scientific method (singular) since the early 20th century. Various systems of education, including but not limited to the US, have taught the method of science as a process or procedure, structured as a definitive series of steps: observation, hypothesis, prediction, experiment.

    This version of the method of science has been a long-established standard in primary and secondary education, as well as the biomedical sciences. It has long been held to be an inaccurate idealisation of how some scientific inquiries are structured.

    The taught presentation of science had to defend demerits such as:

    it pays no regard to the social context of science,


    it suggests a singular methodology of deriving knowledge,


    it overemphasises experimentation,


    it oversimplifies science, giving the impression that following a scientific process automatically leads to knowledge,


    it gives the illusion of determination; that questions necessarily lead to some kind of answers and answers are preceded by (specific) questions,


    and, it holds that scientific theories arise from observed phenomena only.
    The scientific method no longer features in the standards for US education of 2013 (NGSS) that replaced those of 1996 (NRC). They, too, influenced international science education, and the standards measured for have shifted since from the singular hypothesis-testing method to a broader conception of scientific methods. These scientific methods, which are rooted in scientific practices and not epistemology, are described as the 3 dimensions of scientific and engineering practices, crosscutting concepts (interdisciplinary ideas), and disciplinary core ideas.

    The scientific method, as a result of simplified and universal explanations, is often held to have reached a kind of mythological status; as a tool for communication or, at best, an idealisation. Education’s approach was heavily influenced by John Dewey’s, How We Think (1910). Van der Ploeg (2016) indicated that Dewey’s views on education had long been used to further an idea of citizen education removed from “sound education”, claiming that references to Dewey in such arguments were undue interpretations (of Dewey).

    Sociology of knowledge

    The sociology of knowledge is a concept in the discussion around scientific method, claiming the underlying method of science to be sociological. King explains that sociology distinguishes here between the system of ideas that govern the sciences through an inner logic, and the social system in which those ideas arise.

    Thought collectives

    A perhaps accessible lead into what is claimed is Fleck’s thought, echoed in Kuhn’s concept of normal science. According to Fleck, scientists’ work is based on a thought-style, that cannot be rationally reconstructed. It gets instilled through the experience of learning, and science is then advanced based on a tradition of shared assumptions held by what he called thought collectives. Fleck also claims this phenomenon to be largely invisible to members of the group.

    Comparably, following the field research in an academic scientific laboratory by Latour and Woolgar, Karin Knorr Cetina has conducted a comparative study of two scientific fields (namely high energy physics and molecular biology) to conclude that the epistemic practices and reasonings within both scientific communities are different enough to introduce the concept of “epistemic cultures”, in contradiction with the idea that a so-called “scientific method” is unique and a unifying concept.

    Situated cognition and relativism

    On the idea of Fleck’s thought collectives sociologists built the concept of situated cognition: that the perspective of the researcher fundamentally affects their work; and, too, more radical views.

    Norwood Russell Hanson, alongside Thomas Kuhn and Paul Feyerabend, extensively explored the theory-laden nature of observation in science. Hanson introduced the concept in 1958, emphasizing that observation is influenced by the observer’s conceptual framework. He used the concept of gestalt to show how preconceptions can affect both observation and description, and illustrated this with examples like the initial rejection of Golgi bodies as an artefact of staining technique, and the differing interpretations of the same sunrise by Tycho Brahe and Johannes Kepler. Intersubjectivity led to different conclusions.

    Kuhn and Feyerabend acknowledged Hanson’s pioneering work, although Feyerabend’s views on methodological pluralism were more radical. Criticisms like those from Kuhn and Feyerabend prompted discussions leading to the development of the strong programme, a sociological approach that seeks to explain scientific knowledge without recourse to the truth or validity of scientific theories. It examines how scientific beliefs are shaped by social factors such as power, ideology, and interests.

    The postmodernist critiques of science have themselves been the subject of intense controversy. This ongoing debate, known as the science wars, is the result of conflicting values and assumptions between postmodernist and realist perspectives. Postmodernists argue that scientific knowledge is merely a discourse, devoid of any claim to fundamental truth. In contrast, realists within the scientific community maintain that science uncovers real and fundamental truths about reality. Many books have been written by scientists which take on this problem and challenge the assertions of the postmodernists while defending science as a legitimate way of deriving truth.

    Limits of method

    Role of chance in discovery

    Somewhere between 33% and 50% of all scientific discoveries are estimated to have been stumbled upon, rather than sought out. This may explain why scientists so often express that they were lucky. Scientists themselves in the 19th and 20th century acknowledged the role of fortunate luck or serendipity in discoveries. Louis Pasteur is credited with the famous saying that “Luck favours the prepared mind”, but some psychologists have begun to study what it means to be ‘prepared for luck’ in the scientific context. Research is showing that scientists are taught various heuristics that tend to harness chance and the unexpected. This is what Nassim Nicholas Taleb calls “Anti-fragility”; while some systems of investigation are fragile in the face of human error, human bias, and randomness, the scientific method is more than resistant or tough – it actually benefits from such randomness in many ways (it is anti-fragile). Taleb believes that the more anti-fragile the system, the more it will flourish in the real world.

    Psychologist Kevin Dunbar says the process of discovery often starts with researchers finding bugs in their experiments. These unexpected results lead researchers to try to fix what they think is an error in their method. Eventually, the researcher decides the error is too persistent and systematic to be a coincidence. The highly controlled, cautious, and curious aspects of the scientific method are thus what make it well suited for identifying such persistent systematic errors. At this point, the researcher will begin to think of theoretical explanations for the error, often seeking the help of colleagues across different domains of expertise.

    Relationship with statistics

    When the scientific method employs statistics as a key part of its arsenal, there are mathematical and practical issues that can have a deleterious effect on the reliability of the output of scientific methods. This is described in a popular 2005 scientific paper “Why Most Published Research Findings Are False” by John Ioannidis, which is considered foundational to the field of metascience. Much research in metascience seeks to identify poor use of statistics and improve its use, an example being the misuse of p-values.

    The particular points raised are statistical (“The smaller the studies conducted in a scientific field, the less likely the research findings are to be true” and “The greater the flexibility in designs, definitions, outcomes, and analytical modes in a scientific field, the less likely the research findings are to be true.”) and economical (“The greater the financial and other interests and prejudices in a scientific field, the less likely the research findings are to be true” and “The hotter a scientific field (with more scientific teams involved), the less likely the research findings are to be true.”) Hence: “Most research findings are false for most research designs and for most fields” and “As shown, the majority of modern biomedical research is operating in areas with very low pre- and poststudy probability for true findings.” However: “Nevertheless, most new discoveries will continue to stem from hypothesis-generating research with low or very low pre-study odds,” which means that new discoveries will come from research that, when that research started, had low or very low odds (a low or very low chance) of succeeding. Hence, if the scientific method is used to expand the frontiers of knowledge, research into areas that are outside the mainstream will yield the newest discoveries.

    Science of complex systems

    Science applied to complex systems can involve elements such as transdisciplinarity, systems theory, control theory, and scientific modelling.

    In general, the scientific method may be difficult to apply stringently to diverse, interconnected systems and large data sets. In particular, practices used within Big data, such as predictive analytics, may be considered to be at odds with the scientific method, as some of the data may have been stripped of the parameters which might be material in alternative hypotheses for an explanation; thus the stripped data would only serve to support the null hypothesis in the predictive analytics application. Fleck (1979), pp. 38–50 notes “a scientific discovery remains incomplete without considerations of the social practices that condition it”.

    Relationship with mathematics

    Science is the process of gathering, comparing, and evaluating proposed models against observables. A model can be a simulation, mathematical or chemical formula, or set of proposed steps. Science is like mathematics in that researchers in both disciplines try to distinguish what is known from what is unknown at each stage of discovery. Models, in both science and mathematics, need to be internally consistent and also ought to be falsifiable (capable of disproof). In mathematics, a statement need not yet be proved; at such a stage, that statement would be called a conjecture.

    Mathematical work and scientific work can inspire each other. For example, the technical concept of time arose in science, and timelessness was a hallmark of a mathematical topic. But today, the Poincaré conjecture has been proved using time as a mathematical concept in which objects can flow (see Ricci flow).

    Nevertheless, the connection between mathematics and reality (and so science to the extent it describes reality) remains obscure. Eugene Wigner’s paper, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”, is a very well-known account of the issue from a Nobel Prize-winning physicist. In fact, some observers (including some well-known mathematicians such as Gregory Chaitin, and others such as Lakoff and Núñez) have suggested that mathematics is the result of practitioner bias and human limitation (including cultural ones), somewhat like the post-modernist view of science.

    George Pólya’s work on problem solving, the construction of mathematical proofs, and heuristic show that the mathematical method and the scientific method differ in detail, while nevertheless resembling each other in using iterative or recursive steps.


    Mathematical method
    Scientific method
    1UnderstandingCharacterization from experience and observation
    2AnalysisHypothesis: a proposed explanation
    3SynthesisDeduction: prediction from the hypothesis
    4Review/ExtendTest and experiment

    In Pólya’s view, understanding involves restating unfamiliar definitions in your own words, resorting to geometrical figures, and questioning what we know and do not know already; analysis, which Pólya takes from Pappus, involves free and heuristic construction of plausible arguments, working backward from the goal, and devising a plan for constructing the proof; synthesis is the strict Euclidean exposition of step-by-step details of the proof; review involves reconsidering and re-examining the result and the path taken to it.

    Building on Pólya’s work, Imre Lakatos argued that mathematicians actually use contradiction, criticism, and revision as principles for improving their work.In like manner to science, where truth is sought, but certainty is not found, in Proofs and Refutations, what Lakatos tried to establish was that no theorem of informal mathematics is final or perfect. This means that, in non-axiomatic mathematics, we should not think that a theorem is ultimately true, only that no counterexample has yet been found. Once a counterexample, i.e. an entity contradicting/not explained by the theorem is found, we adjust the theorem, possibly extending the domain of its validity. This is a continuous way our knowledge accumulates, through the logic and process of proofs and refutations. (However, if axioms are given for a branch of mathematics, this creates a logical system —Wittgenstein 1921 Tractatus Logico-Philosophicus 5.13; Lakatos claimed that proofs from such a system were tautological, i.e. internally logically true, by rewriting forms, as shown by Poincaré, who demonstrated the technique of transforming tautologically true forms (viz. the Euler characteristic) into or out of forms from homology, or more abstractly, from homological algebra.

    Lakatos proposed an account of mathematical knowledge based on Polya’s idea of heuristics. In Proofs and Refutations, Lakatos gave several basic rules for finding proofs and counterexamples to conjectures. He thought that mathematical ‘thought experiments’ are a valid way to discover mathematical conjectures and proofs.

    Gauss, when asked how he came about his theorems, once replied “durch planmässiges Tattonieren” (through systematic palpable experimentation).

  • Science

    Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe.Modern science is typically divided into two or three major branches: the natural sciences (e.g., physics, chemistry, and biology), which study the physical world; and the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies.Applied sciences are disciplines that use scientific knowledge for practical purposes, such as engineering and medicine. While sometimes referred to as the formal sciences, the study of logic, mathematics, and theoretical computer science (which study formal systems governed by axioms and rules) are typically regarded as separate because they rely on deductive reasoning instead of the scientific method or empirical evidence as their main methodology.

    The history of science spans the majority of the historical record, with the earliest identifiable predecessors to modern science dating to the Bronze Age in Egypt and Mesopotamia (c. 3000–1200 BCE). Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes, while further advancements, including the introduction of the Hindu–Arabic numeral system, were made during the Golden Age of India.Scientific research deteriorated in these regions after the fall of the Western Roman Empire during the Early Middle Ages (400–1000 CE), but in the Medieval renaissances (Carolingian Renaissance, Ottonian Renaissance and the Renaissance of the 12th century) scholarship flourished again. Some Greek manuscripts lost in Western Europe were preserved and expanded upon in the Middle East during the Islamic Golden Age, along with the later efforts of Byzantine Greek scholars who brought Greek manuscripts from the dying Byzantine Empire to Western Europe at the start of the Renaissance.

    The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th centuries revived natural philosophy, which was later transformed by the Scientific Revolution that began in the 16th century as new ideas and discoveries departed from previous Greek conceptions and traditions. The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape, along with the changing of “natural philosophy” to “natural science”.

    New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems. Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions, government agencies, and companies. The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritising the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection.

    Etymology

    The word science has been used in Middle English since the 14th century in the sense of “the state of knowing”. The word was borrowed from the Anglo-Norman language as the suffix -cience, which was borrowed from the Latin word scientia, meaning “knowledge, awareness, understanding”, a noun derivative of sciens meaning “knowing”, itself the present active participle of sciō, “to know”.

    There are many hypotheses for science’s ultimate word origin. According to Michiel de Vaan, Dutch linguist and Indo-Europeanist, sciō may have its origin in the Proto-Italic language as *skije- or *skijo- meaning “to know”, which may originate from Proto-Indo-European language as *skh1-ie, *skh1-io, meaning “to incise”. The Lexikon der indogermanischen Verben proposed sciō is a back-formation of nescīre, meaning “to not know, be unfamiliar with”, which may derive from Proto-Indo-European *sekH- in Latin secāre, or *skh2-, from *sḱʰeh2(i)- meaning “to cut”.

    In the past, science was a synonym for “knowledge” or “study”, in keeping with its Latin origin. A person who conducted scientific research was called a “natural philosopher” or “man of science”. In 1834, William Whewell introduced the term scientist in a review of Mary Somerville’s book On the Connexion of the Physical Sciences, crediting it to “some ingenious gentleman” (possibly himself).

    History

    Early history

    Science has no single origin. Rather, scientific thinking emerged gradually over the course of tens of thousands of years, taking different forms around the world, and few details are known about the very earliest developments. Women likely played a central role in prehistoric science,as did religious rituals. Some scholars use the term “protoscience” to label activities in the past that resemble modern science in some but not all features;however, this label has also been criticised as denigrating, or too suggestive of presentism, thinking about those activities only in relation to modern categories.

    Direct evidence for scientific processes becomes clearer with the advent of writing systems in the Bronze Age civilisations of Ancient Egypt and Mesopotamia (bc.3000–1200 BCE), creating the earliest written records in the history of science.Although the words and concepts of “science” and “nature” were not part of the conceptual landscape at the time, the ancient Egyptians and Mesopotamians made contributions that would later find a place in Greek and medieval science: mathematics, astronomy, and medicine.From the 3rd millennium BCE, the ancient Egyptians developed a non-positional decimal numbering system,[ solved practical problems using geometry, and developed a calendar. Their healing therapies involved drug treatments and the supernatural, such as prayers, incantations, and rituals.

    The ancient Mesopotamians used knowledge about the properties of various natural chemicals for manufacturing pottery, faience, glass, soap, metals, lime plaster, and waterproofing. They studied animal physiology, anatomy, behaviour, and astrology for divinatory purposes. The Mesopotamians had an intense interest in medicine and the earliest medical prescriptions appeared in Sumerian during the Third Dynasty of Ur.They seem to have studied scientific subjects which had practical or religious applications and had little interest in satisfying curiosity.

    Classical antiquity

    In classical antiquity, there is no real ancient analogue of a modern scientist. Instead, well-educated, usually upper-class, and almost universally male individuals performed various investigations into nature whenever they could afford the time. Before the invention or discovery of the concept of phusis or nature by the pre-Socratic philosophers, the same words tend to be used to describe the natural “way” in which a plant grows, and the “way” in which, for example, one tribe worships a particular god. For this reason, it is claimed that these men were the first philosophers in the strict sense and the first to clearly distinguish “nature” and “convention”.

    The early Greek philosophers of the Milesian school, which was founded by Thales of Miletus and later continued by his successors Anaximander and Anaximenes, were the first to attempt to explain natural phenomena without relying on the supernatural. The Pythagoreans developed a complex number philosophy467–468 and contributed significantly to the development of mathematical science.The theory of atoms was developed by the Greek philosopher Leucippus and his student Democritus. Later, Epicurus would develop a full natural cosmology based on atomism, and would adopt a “canon” (ruler, standard) which established physical criteria or standards of scientific truth. The Greek doctor Hippocrates established the tradition of systematic medical science and is known as “The Father of Medicine”.

    A turning point in the history of early philosophical science was Socrates’ example of applying philosophy to the study of human matters, including human nature, the nature of political communities, and human knowledge itself. The Socratic method as documented by Plato’s dialogues is a dialectic method of hypothesis elimination: better hypotheses are found by steadily identifying and eliminating those that lead to contradictions. The Socratic method searches for general commonly-held truths that shape beliefs and scrutinises them for consistency. Socrates criticised the older type of study of physics as too purely speculative and lacking in self-criticism.

    In the 4th century BCE, Aristotle created a systematic programme of teleological philosophy.In the 3rd century BCE, Greek astronomer Aristarchus of Samos was the first to propose a heliocentric model of the universe, with the Sun at the centre and all the planets orbiting it. Aristarchus’s model was widely rejected because it was believed to violate the laws of physics, while Ptolemy’s Almagest, which contains a geocentric description of the Solar System, was accepted through the early Renaissance instead.The inventor and mathematician Archimedes of Syracuse made major contributions to the beginnings of calculus. Pliny the Elder was a Roman writer and polymath, who wrote the seminal encyclopaedia Natural History.

    Positional notation for representing numbers likely emerged between the 3rd and 5th centuries CE along Indian trade routes. This numeral system made efficient arithmetic operations more accessible and would eventually become standard for mathematics worldwide.

    Middle Ages

    Due to the collapse of the Western Roman Empire, the 5th century saw an intellectual decline, with knowledge of classical Greek conceptions of the world deteriorating in Western Europe. 194 Latin encyclopaedists of the period such as Isidore of Seville preserved the majority of general ancient knowledge. In contrast, because the Byzantine Empire resisted attacks from invaders, they were able to preserve and improve prior learning.159 John Philoponus, a Byzantine scholar in the 6th century, started to question Aristotle’s teaching of physics, introducing the theory of impetus.307,311,363,402 His criticism served as an inspiration to medieval scholars and Galileo Galilei, who extensively cited his works ten centuries later.307–308

    During late antiquity and the Early Middle Ages, natural phenomena were mainly examined via the Aristotelian approach. The approach includes Aristotle’s four causes: material, formal, moving, and final cause. Many Greek classical texts were preserved by the Byzantine Empire and Arabic translations were done by groups such as the Nestorians and the Monophysites. Under the Abbasids, these Arabic translations were later improved and developed by Arabic scientists. By the 6th and 7th centuries, the neighbouring Sasanian Empire established the medical Academy of Gondishapur, which was considered by Greek, Syriac, and Persian physicians as the most important medical hub of the ancient world.

    Islamic study of Aristotelianism flourished in the House of Wisdom established in the Abbasid capital of Baghdad, Iraq and the flourished until the Mongol invasions in the 13th century. Ibn al-Haytham, better known as Alhazen, used controlled experiments in his optical study. Avicenna’s compilation of The Canon of Medicine, a medical encyclopaedia, is considered to be one of the most important publications in medicine and was used until the 18th century.

    By the 11th century most of Europe had become Christian,204 and in 1088, the University of Bologna emerged as the first university in Europe. As such, demand for Latin translation of ancient and scientific texts grew,204 a major contributor to the Renaissance of the 12th century. Renaissance scholasticism in western Europe flourished, with experiments done by observing, describing, and classifying subjects in nature. In the 13th century, medical teachers and students at Bologna began opening human bodies, leading to the first anatomy textbook based on human dissection by Mondino de Luzzi.

    Renaissance

    New developments in optics played a role in the inception of the Renaissance, both by challenging long-held metaphysical ideas on perception, as well as by contributing to the improvement and development of technology such as the camera obscura and the telescope. At the start of the Renaissance, Roger Bacon, Vitello, and John Peckham each built up a scholastic ontology upon a causal chain beginning with sensation, perception, and finally apperception of the individual and universal forms of Aristotle. Book A model of vision later known as perspectivism was exploited and studied by the artists of the Renaissance. This theory uses only three of Aristotle’s four causes: formal, material, and final.

    In the 16th century, Nicolaus Copernicus formulated a heliocentric model of the Solar System, stating that the planets revolve around the Sun, instead of the geocentric model where the planets and the Sun revolve around the Earth. This was based on a theorem that the orbital periods of the planets are longer as their orbs are farther from the centre of motion, which he found not to agree with Ptolemy’s model.

    Johannes Kepler and others challenged the notion that the only function of the eye is perception, and shifted the main focus in optics from the eye to the propagation of light. Kepler is best known, however, for improving Copernicus’ heliocentric model through the discovery of Kepler’s laws of planetary motion. Kepler did not reject Aristotelian metaphysics and described his work as a search for the Harmony of the Spheres. Galileo had made significant contributions to astronomy, physics and engineering. However, he became persecuted after Pope Urban VIII sentenced him for writing about the heliocentric model.

    The printing press was widely used to publish scholarly arguments, including some that disagreed widely with contemporary ideas of nature. Francis Bacon and René Descartes published philosophical arguments in favour of a new type of non-Aristotelian science. Bacon emphasised the importance of experiment over contemplation, questioned the Aristotelian concepts of formal and final cause, promoted the idea that science should study the laws of nature and the improvement of all human life. Descartes emphasised individual thought and argued that mathematics rather than geometry should be used to study nature.

    Age of Enlightenment

    At the start of the Age of Enlightenment, Isaac Newton formed the foundation of classical mechanics by his Philosophiæ Naturalis Principia Mathematica, greatly influencing future physicists. Gottfried Wilhelm Leibniz incorporated terms from Aristotelian physics, now used in a new non-teleological way. This implied a shift in the view of objects: objects were now considered as having no innate goals. Leibniz assumed that different types of things all work according to the same general laws of nature, with no special formal or final causes.

    During this time the declared purpose and value of science became producing wealth and inventions that would improve human lives, in the materialistic sense of having more food, clothing, and other things. In Bacon’s words, “the real and legitimate goal of sciences is the endowment of human life with new inventions and riches”, and he discouraged scientists from pursuing intangible philosophical or spiritual ideas, which he believed contributed little to human happiness beyond “the fume of subtle, sublime or pleasing”.

    Science during the Enlightenment was dominated by scientific societies and academies,which had largely replaced universities as centres of scientific research and development. Societies and academies were the backbones of the maturation of the scientific profession. Another important development was the popularisation of science among an increasingly literate population. Enlightenment philosophers turned to a few of their scientific predecessors – Galileo, Kepler, Boyle, and Newton principally – as the guides to every physical and social field of the day.

    The 18th century saw significant advancements in the practice of medicine and physics; the development of biological taxonomy by Carl Linnaeus; a new understanding of magnetism and electricity; and the maturation of chemistry as a discipline. Ideas on human nature, society, and economics evolved during the Enlightenment. Hume and other Scottish Enlightenment thinkers developed A Treatise of Human Nature, which was expressed historically in works by authors including James Burnett, Adam Ferguson, John Millar and William Robertson, all of whom merged a scientific study of how humans behaved in ancient and primitive cultures with a strong awareness of the determining forces of modernity. Modern sociology largely originated from this movement. In 1776, Adam Smith published The Wealth of Nations, which is often considered the first work on modern economics.

    19th century

    During the 19th century, many distinguishing characteristics of contemporary modern science began to take shape. These included the transformation of the life and physical sciences; the frequent use of precision instruments; the emergence of terms such as “biologist”, “physicist”, and “scientist”; an increased professionalisation of those studying nature; scientists gaining cultural authority over many dimensions of society; the industrialisation of numerous countries; the thriving of popular science writings; and the emergence of science journals. During the late 19th century, psychology emerged as a separate discipline from philosophy when Wilhelm Wundt founded the first laboratory for psychological research in 1879.

    During the mid-19th century Charles Darwin and Alfred Russel Wallace independently proposed the theory of evolution by natural selection in 1858, which explained how different plants and animals originated and evolved. Their theory was set out in detail in Darwin’s book On the Origin of Species, published in 1859. Separately, Gregor Mendel presented his paper, “Experiments on Plant Hybridisation” in 1865, which outlined the principles of biological inheritance, serving as the basis for modern genetics.

    Early in the 19th century John Dalton suggested the modern atomic theory, based on Democritus’s original idea of indivisible particles called atoms. The laws of conservation of energy, conservation of momentum and conservation of mass suggested a highly stable universe where there could be little loss of resources. However, with the advent of the steam engine and the Industrial Revolution there was an increased understanding that not all forms of energy have the same energy qualities, the ease of conversion to useful work or to another form of energy. This realisation led to the development of the laws of thermodynamics, in which the free energy of the universe is seen as constantly declining: the entropy of a closed universe increases over time.

    The electromagnetic theory was established in the 19th century by the works of Hans Christian Ørsted, André-Marie Ampère, Michael Faraday, James Clerk Maxwell, Oliver Heaviside, and Heinrich Hertz. The new theory raised questions that could not easily be answered using Newton’s framework. The discovery of X-rays inspired the discovery of radioactivity by Henri Becquerel and Marie Curie in 1896, Marie Curie then became the first person to win two Nobel Prizes. In the next year came the discovery of the first subatomic particle, the electron.

    20th century

    In the first half of the century the development of antibiotics and artificial fertilisers improved human living standards globally. Harmful environmental issues such as ozone depletion, ocean acidification, eutrophication, and climate change came to the public’s attention and caused the onset of environmental studies.

    During this period scientific experimentation became increasingly larger in scale and funding. The extensive technological innovation stimulated by World War I, World War II, and the Cold War led to competitions between global powers, such as the Space Race and nuclear arms race. Substantial international collaborations were also made, despite armed conflicts.

    In the late 20th century active recruitment of women and elimination of sex discrimination greatly increased the number of women scientists, but large gender disparities remained in some fields. The discovery of the cosmic microwave background in 1964 led to a rejection of the steady-state model of the universe in favour of the Big Bang theory of Georges Lemaître.

    The century saw fundamental changes within science disciplines. Evolution became a unified theory in the early 20th-century when the modern synthesis reconciled Darwinian evolution with classical genetics. Albert Einstein’s theory of relativity and the development of quantum mechanics complement classical mechanics to describe physics in extreme length, time and gravity. Widespread use of integrated circuits in the last quarter of the 20th century combined with communications satellites led to a revolution in information technology and the rise of the global internet and mobile computing, including smartphones. The need for mass systematisation of long, intertwined causal chains and large amounts of data led to the rise of the fields of systems theory and computer-assisted scientific modelling.

    21st century

    The Human Genome Project was completed in 2003 by identifying and mapping all of the genes of the human genome. The first induced pluripotent human stem cells were made in 2006, allowing adult cells to be transformed into stem cells and turn into any cell type found in the body. With the affirmation of the Higgs boson discovery in 2013, the last particle predicted by the Standard Model of particle physics was found. In 2015, gravitational waves, predicted by general relativity a century before, were first observed. In 2019, the international collaboration Event Horizon Telescope presented the first direct image of a black hole’s accretion disc.

    Branches

    Modern science is commonly divided into three major branches: natural science, social science, and formal science. Each of these branches comprises various specialised yet overlapping scientific disciplines that often possess their own nomenclature and expertise. Both natural and social sciences are empirical sciences, as their knowledge is based on empirical observations and is capable of being tested for its validity by other researchers working under the same conditions.

    Natural science

    Natural science is the study of the physical world. It can be divided into two main branches: life science and physical science. These two branches may be further divided into more specialised disciplines. For example, physical science can be subdivided into physics, chemistry, astronomy, and earth science. Modern natural science is the successor to the natural philosophy that began in Ancient Greece. Galileo, Descartes, Bacon, and Newton debated the benefits of using approaches that were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain necessary in natural science. Systematic data collection, including discovery science, succeeded natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and other biotic beings.Today, “natural history” suggests observational descriptions aimed at popular audiences.

    Social science

    Social science is the study of human behaviour and the functioning of societies. It has many disciplines that include, but are not limited to anthropology, economics, history, human geography, political science, psychology, and sociology. In the social sciences, there are many competing theoretical perspectives, many of which are extended through competing research programmes such as the functionalists, conflict theorists, and interactionists in sociology. Due to the limitations of conducting controlled experiments involving large groups of individuals or complex situations, social scientists may adopt other research methods such as the historical method, case studies, and cross-cultural studies. Moreover, if quantitative information is available, social scientists may rely on statistical approaches to better understand social relationships and processes.

    Formal science

    Formal science is an area of study that generates knowledge using formal systems. A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. It includes mathematics,systems theory, and theoretical computer science. The formal sciences share similarities with the other two branches by relying on objective, careful, and systematic study of an area of knowledge. They are, however, different from the empirical sciences as they rely exclusively on deductive reasoning, without the need for empirical evidence, to verify their abstract concepts. The formal sciences are therefore a priori disciplines and because of this, there is disagreement on whether they constitute a science. Nevertheless, the formal sciences play an important role in the empirical sciences. Calculus, for example, was initially invented to understand motion in physics. Natural and social sciences that rely heavily on mathematical applications include mathematical physics, chemistry, biology, finance, and economics.

    Applied science

    Applied science is the use of the scientific method and knowledge to attain practical goals and includes a broad range of disciplines such as engineering and medicine. Engineering is the use of scientific principles to invent, design and build machines, structures and technologies. Science may contribute to the development of new technologies. Medicine is the practice of caring for patients by maintaining and restoring health through the prevention, diagnosis, and treatment of injury or disease.

    Basic sciences

    The applied sciences are often contrasted with the basic sciences, which are focused on advancing scientific theories and laws that explain and predict events in the natural world.

    Blue skies science

    Blue skies research, also called blue sky science, is scientific research in domains where “real-world” applications are not immediately apparent. It has been defined as “research without a clear goal” and “curiosity-driven science”. Proponents of this mode of science argue that unanticipated scientific breakthroughs are sometimes more valuable than the outcomes of agenda-driven research, heralding advances in genetics and stem cell biology as examples of unforeseen benefits of research that was originally seen as purely theoretical in scope. Because of the inherently uncertain return on investment, blue-sky projects are sometimes politically and commercially unpopular and tend to lose funding to research perceived as being more reliably profitable or practical.

    Computational science

    Computational science applies computer simulations to science, enabling a better understanding of scientific problems than formal mathematics alone can achieve. The use of machine learning and artificial intelligence is becoming a central feature of computational contributions to science, for example in agent-based computational economics, random forests, topic modeling and various forms of prediction. However, machines alone rarely advance knowledge as they require human guidance and capacity to reason; and they can introduce bias against certain social groups or sometimes underperform against humans.

    Interdisciplinary science

    Interdisciplinary science involves the combination of two or more disciplines into one, such as bioinformatics, a combination of biology and computer science or cognitive sciences. The concept has existed since the ancient Greek period and it became popular again in the 20th century.

    Scientific research

    Scientific research can be labelled as either basic or applied research. Basic research is the search for knowledge and applied research is the search for solutions to practical problems using this knowledge. Most understanding comes from basic research, though sometimes applied research targets specific practical problems. This leads to technological advances that were not previously imaginable.

    Scientific method

    Scientific research involves using the scientific method, which seeks to objectively explain the events of nature in a reproducible way. Scientists usually take for granted a set of basic assumptions that are needed to justify the scientific method: there is an objective reality shared by all rational observers; this objective reality is governed by natural laws; these laws were discovered by means of systematic observation and experimentation. Mathematics is essential in the formation of hypotheses, theories, and laws, because it is used extensively in quantitative modelling, observing, and collecting measurements. Statistics is used to summarise and analyse data, which allows scientists to assess the reliability of experimental results.

    In the scientific method an explanatory thought experiment or hypothesis is put forward as an explanation using parsimony principles and is expected to seek consilience – fitting with other accepted facts related to an observation or scientific question. This tentative explanation is used to make falsifiable predictions, which are typically posted before being tested by experimentation. Disproof of a prediction is evidence of progress.4–5 Experimentation is especially important in science to help establish causal relationships to avoid the correlation fallacy, though in some sciences such as astronomy or geology, a predicted observation might be more appropriate.

    When a hypothesis proves unsatisfactory it is modified or discarded. If the hypothesis survives testing, it may become adopted into the framework of a scientific theory, a validly reasoned, self-consistent model or framework for describing the behaviour of certain natural events. A theory typically describes the behaviour of much broader sets of observations than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus, a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. Scientists may generate a model, an attempt to describe or depict an observation in terms of a logical, physical or mathematical representation, and to generate new hypotheses that can be tested by experimentation.

    While performing experiments to test hypotheses, scientists may have a preference for one outcome over another. Eliminating the bias can be achieved through transparency, careful experimental design, and a thorough peer review process of the experimental results and conclusions.After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be. Taken in its entirety, the scientific method allows for highly creative problem solving while minimising the effects of subjective and confirmation bias.Intersubjective verifiability, the ability to reach a consensus and reproduce results, is fundamental to the creation of all scientific knowledge.

    Scientific literature

    Scientific research is published in a range of literature. Scientific journals communicate and document the results of research carried out in universities and various other research institutions, serving as an archival record of science. The first scientific journals, Journal des sçavans followed by Philosophical Transactions, began publication in 1665. Since that time the total number of active periodicals has steadily increased. In 1981, one estimate for the number of scientific and technical journals in publication was 11,500.

    Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a scientific paper. Science has become so pervasive in modern societies that it is considered necessary to communicate the achievements, news, and ambitions of scientists to a wider population.

    Challenges

    The replication crisis is an ongoing methodological crisis that affects parts of the social and life sciences. In subsequent investigations, the results of many scientific studies have been proven to be unrepeatable. The crisis has long-standing roots; the phrase was coined in the early 2010s as part of a growing awareness of the problem. The replication crisis represents an important body of research in metascience, which aims to improve the quality of all scientific research while reducing waste.

    An area of study or speculation that masquerades as science in an attempt to claim legitimacy that it would not otherwise be able to achieve is sometimes referred to as pseudoscience, fringe science, or junk science. Physicist Richard Feynman coined the term “cargo cult science” for cases in which researchers believe, and at a glance, look like they are doing science but lack the honesty to allow their results to be rigorously evaluated. Various types of commercial advertising, ranging from hype to fraud, may fall into these categories. Science has been described as “the most important tool” for separating valid claims from invalid ones.

    There can also be an element of political bias or ideological bias on all sides of scientific debates. Sometimes, research may be characterised as “bad science”, research that may be well-intended but is incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term scientific misconduct refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.

    Philosophy of science

    There are different schools of thought in the philosophy of science. The most popular position is empiricism, which holds that knowledge is created by a process involving observation; scientific theories generalise observations. Empiricism generally encompasses inductivism, a position that explains how general theories can be made from the finite amount of empirical evidence available. Many versions of empiricism exist, with the predominant ones being Bayesianism and the hypothetico-deductive method.

    Empiricism has stood in contrast to rationalism, the position originally associated with Descartes, which holds that knowledge is created by the human intellect, not by observation. Critical rationalism is a contrasting 20th-century approach to science, first defined by Austrian-British philosopher Karl Popper. Popper rejected the way that empiricism describes the connection between theory and observation. He claimed that theories are not generated by observation, but that observation is made in the light of theories, and that the only way theory A can be affected by observation is after theory A were to conflict with observation, but theory B were to survive the observation. Popper proposed replacing verifiability with falsifiability as the landmark of scientific theories, replacing induction with falsification as the empirical method. Popper further claimed that there is actually only one universal method, not specific to science: the negative method of criticism, trial and error, covering all products of the human mind, including science, mathematics, philosophy, and art.

    Another approach, instrumentalism, emphasises the utility of theories as instruments for explaining and predicting phenomena. It views scientific theories as black boxes, with only their input (initial conditions) and output (predictions) being relevant. Consequences, theoretical entities, and logical structure are claimed to be things that should be ignored. Close to instrumentalism is constructive empiricism, according to which the main criterion for the success of a scientific theory is whether what it says about observable entities is true.

    Thomas Kuhn argued that the process of observation and evaluation takes place within a paradigm, a logically consistent “portrait” of the world that is consistent with observations made from its framing. He characterised normal science as the process of observation and “puzzle solving”, which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift. Each paradigm has its own distinct questions, aims, and interpretations. The choice between paradigms involves setting two or more “portraits” against the world and deciding which likeness is most promising. A paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn’s position, however, is not one of relativism.

    Another approach often cited in debates of scientific scepticism against controversial movements like “creation science” is methodological naturalism. Naturalists maintain that a difference should be made between natural and supernatural, and science should be restricted to natural explanations. Methodological naturalism maintains that science requires strict adherence to empirical study and independent verification.

    Scientific community

    The scientific community is a network of interacting scientists who conduct scientific research. The community consists of smaller groups working in scientific fields. By having peer review, through discussion and debate within journals and conferences, scientists maintain the quality of research methodology and objectivity when interpreting results.

    Scientists

    Scientists are individuals who conduct scientific research to advance knowledge in an area of interest. Scientists may exhibit a strong curiosity about reality and a desire to apply scientific knowledge for the benefit of public health, nations, the environment, or industries; other motivations include recognition by peers and prestige. In modern times, many scientists study within specific areas of science in academic institutions, often obtaining advanced degrees in the process. Many scientists pursue careers in various fields such as academia, industry, government, and nonprofit organisations.

    Science has historically been a male-dominated field, with notable exceptions. Women have faced considerable discrimination in science, much as they have in other areas of male-dominated societies. For example, women were frequently passed over for job opportunities and denied credit for their work. The achievements of women in science have been attributed to the defiance of their traditional role as labourers within the domestic sphere.

    Learned societies

    Learned societies for the communication and promotion of scientific thought and experimentation have existed since the Renaissance. Many scientists belong to a learned society that promotes their respective scientific discipline, profession, or group of related disciplines. Membership may either be open to all, require possession of scientific credentials, or conferred by election.Most scientific societies are nonprofit organisations, and many are professional associations. Their activities typically include holding regular conferences for the presentation and discussion of new research results and publishing or sponsoring academic journals in their discipline. Some societies act as professional bodies, regulating the activities of their members in the public interest, or the collective interest of the membership.

    The professionalisation of science, begun in the 19th century, was partly enabled by the creation of national distinguished academies of sciences such as the Italian Accademia dei Lincei in 1603, the British Royal Society in 1660, the French Academy of Sciences in 1666, the American National Academy of Sciences in 1863, the German Kaiser Wilhelm Society in 1911, and the Chinese Academy of Sciences in 1949. International scientific organisations, such as the International Science Council, are devoted to international cooperation for science advancement.

    Awards

    Science awards are usually given to individuals or organisations that have made significant contributions to a discipline. They are often given by prestigious institutions; thus, it is considered a great honour for a scientist receiving them. Since the early Renaissance, scientists have often been awarded medals, money, and titles. The Nobel Prize, a widely regarded prestigious award, is awarded annually to those who have achieved scientific advances in the fields of medicine, physics, and chemistry.

    Society

    Funding and policies

    Funding of science is often through a competitive process in which potential research projects are evaluated and only the most promising receive funding. Such processes, which are run by government, corporations, or foundations, allocate scarce funds. Total research funding in most developed countries is between 1.5% and 3% of GDP. In the OECD, around two-thirds of research and development in scientific and technical fields is carried out by industry, and 20% and 10%, respectively, by universities and government. The government funding proportion in certain fields is higher, and it dominates research in social science and the humanities. In less developed nations, the government provides the bulk of the funds for their basic scientific research.

    Many governments have dedicated agencies to support scientific research, such as the National Science Foundation in the United States, the National Scientific and Technical Research Council in Argentina, Commonwealth Scientific and Industrial Research Organisation in Australia, National Centre for Scientific Research in France, the Max Planck Society in Germany, and National Research Council in Spain. In commercial research and development, all but the most research-orientated corporations focus more heavily on near-term commercialisation possibilities than research driven by curiosity.

    Science policy is concerned with policies that affect the conduct of the scientific enterprise, including research funding, often in pursuance of other national policy goals such as technological innovation to promote commercial product development, weapons development, health care, and environmental monitoring. Science policy sometimes refers to the act of applying scientific knowledge and consensus to the development of public policies. In accordance with public policy being concerned about the well-being of its citizens, science policy’s goal is to consider how science and technology can best serve the public. Public policy can directly affect the funding of capital equipment and intellectual infrastructure for industrial research by providing tax incentives to those organisations that fund research.

    Education and awareness

    Science education for the general public is embedded in the school curriculum, and is supplemented by online pedagogical content (for example, YouTube and Khan Academy), museums, and science magazines and blogs. Major organisations of scientists such as the American Association for the Advancement of Science (AAAS) consider the sciences to be a part of the liberal arts traditions of learning, along with philosophy and history. Scientific literacy is chiefly concerned with an understanding of the scientific method, units and methods of measurement, empiricism, a basic understanding of statistics (correlations, qualitative versus quantitative observations, aggregate statistics), and a basic understanding of core scientific fields such as physics, chemistry, biology, ecology, geology, and computation. As a student advances into higher stages of formal education, the curriculum becomes more in depth. Traditional subjects usually included in the curriculum are natural and formal sciences, although recent movements include social and applied science as well.

    The mass media face pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate may require considerable expertise regarding the matter. Few journalists have real scientific knowledge, and even beat reporters who are knowledgeable about certain scientific issues may be ignorant about other scientific issues that they are suddenly asked to cover.

    Science magazines such as New Scientist, Science & Vie, and Scientific American cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research. The science fiction genre, primarily speculative fiction, can transmit the ideas and methods of science to the general public. Recent efforts to intensify or develop links between science and non-scientific disciplines, such as literature or poetry, include the Creative Writing Science resource developed through the Royal Literary Fund.

    Anti-science attitudes

    While the scientific method is broadly accepted in the scientific community, some fractions of society reject certain scientific positions or are sceptical about science. Examples are the common notion that COVID-19 is not a major health threat to the US (held by 39% of Americans in August 2021) or the belief that climate change is not a major threat to the US (also held by 40% of Americans, in late 2019 and early 2020). Psychologists have pointed to four factors driving rejection of scientific results:

    Scientific authorities are sometimes seen as inexpert, untrustworthy, or biased.
    Some marginalised social groups hold anti-science attitudes, in part because these groups have often been exploited in unethical experiments.
    Messages from scientists may contradict deeply held existing beliefs or morals.
    The delivery of a scientific message may not be appropriately targeted to a recipient’s learning style.
    Anti-science attitudes often seem to be caused by fear of rejection in social groups. For instance, climate change is perceived as a threat by only 22% of Americans on the right side of the political spectrum, but by 85% on the left.That is, if someone on the left would not consider climate change as a threat, this person may face contempt and be rejected in that social group. In fact, people may rather deny a scientifically accepted fact than lose or jeopardise their social status.

    Politics

    Attitudes towards science are often determined by political opinions and goals. Government, business and advocacy groups have been known to use legal and economic pressure to influence scientific researchers. Many factors can act as facets of the politicisation of science such as anti-intellectualism, perceived threats to religious beliefs, and fear for business interests. Politicisation of science is usually accomplished when scientific information is presented in a way that emphasises the uncertainty associated with the scientific evidence. Tactics such as shifting conversation, failing to acknowledge facts, and capitalising on doubt of scientific consensus have been used to gain more attention for views that have been undermined by scientific evidence. Examples of issues that have involved the politicisation of science include the global warming controversy, health effects of pesticides, and health effects of tobacco.

  • Physics

    Physics is the scientific study of matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines. A scientist who specializes in the field of physics is called a physicist.

    Physics is one of the oldest academic disciplines. Over much of the past two millennia, physics, chemistry, biology, and certain branches of mathematics were a part of natural philosophy, but during the Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy.

    Advances in physics often enable new technologies. For example, advances in the understanding of electromagnetism, solid-state physics, and nuclear physics led directly to the development of technologies that have transformed modern society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.

    History

    Ancient astronomy

    Astronomy is one of the oldest natural sciences. Early civilizations dating before 3000 BCE, such as the Sumerians, ancient Egyptians, and the Indus Valley Civilisation, had a predictive knowledge and a basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky, which could not explain the positions of the planets.

    According to Asger Aaboe, the origins of Western astronomy can be found in Mesopotamia, and all Western efforts in the exact sciences are descended from late Babylonian astronomy. Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies,while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey; later Greek astronomers provided names, which are still used today, for most constellations visible from the Northern Hemisphere.

    Natural philosophy

    Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause. They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment; for example, atomism was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus.

    Aristotle and Hellenistic physics

    During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times, natural philosophy developed along many lines of inquiry. Aristotle (Greek: Ἀριστοτέλης, Aristotélēs) (384–322 BCE), a student of Plato, wrote on many subjects, including a substantial treatise on “Physics” – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle’s foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed the field. His approach is entirely superseded today.

    He explained ideas such as motion (and gravity) with the theory of four elements. Aristotle believed that each of the four classical elements (air, fire, water, earth) had its own natural place. Because of their differing densities, each element will revert to its own specific place in the atmosphere. So, because of their weights, fire would be at the top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included: that heavier objects will fall faster, the speed being proportional to the weight and the speed of the object that is falling depends inversely on the density object it is falling through (e.g. density of air). He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it. The problem of motion and its causes was studied carefully, leading to the philosophical notion of a “prime mover” as the ultimate source of all motion in the world (Book 8 of his treatise Physics).

    Medieval European and Islamic

    The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the Byzantine Empire) resisted the attacks from invaders and continued to advance various fields of learning, including physics. In the sixth century, John Philoponus challenged the dominant Aristotelian approach to science although much of his work was focused on Christian theology.

    In the sixth century, Isidore of Miletus created an important compilation of Archimedes’ works that are copied in the Archimedes Palimpsest. Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method.

    The most notable innovations under Islamic scholarship were in the field of optics and vision, which came from the works of many scientists like Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi and Avicenna. The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision. His discussed his experiments with camera obscura, showing that light moved in a straight line; he encouraged readers to reproduce his experiments making him one of the originators of the scientific method.

    Scientific Revolution

    Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.

    Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model, the laws governing the motion of planetary bodies (determined by Johannes Kepler between 1609 and 1619), Galileo’s pioneering work on telescopes and observational astronomy in the 16th and 17th centuries, and Isaac Newton’s discovery and unification of the laws of motion and universal gravitation (that would come to bear his name). Newton, and separately Gottfried Wilhelm Leibniz, developed calculus, the mathematical study of continuous change, and Newton applied it to solve physical problems.

    19th century

    The discovery of laws in thermodynamics, chemistry, and electromagnetics resulted from research efforts during the Industrial Revolution as energy needs increased. By the end of the 19th century, theories of thermodynamics, mechanics, and electromagnetics matched a wide variety of observations. Taken together these theories became the basis for what would later be called classical physics.

    A few experimental results remained inexplicable. Classical electromagnetism presumed a medium, an luminiferous aether to support the propagation of waves, but this medium could not be detected. The intensity of light from hot glowing blackbody objects did not match the predictions of thermodynamics and electromagnetism. The character of electron emission of illuminated metals differed from predictions. These failures, seemingly insignificant in the big picture would upset the physics world in first two decades of the 20th century.

    20th century

    Modern physics began in the early 20th century with the work of Max Planck in quantum theory and Albert Einstein’s theory of relativity. Both of these theories came about due to inaccuracies in classical mechanics in certain situations. Classical mechanics predicted that the speed of light depends on the motion of the observer, which could not be resolved with the constant speed predicted by Maxwell’s equations of electromagnetism. This discrepancy was corrected by Einstein’s theory of special relativity, which replaced classical mechanics for fast-moving bodies and allowed for a constant speed of light. Black-body radiation provided another problem for classical physics, which was corrected when Planck proposed that the excitation of material oscillators is possible only in discrete steps proportional to their frequency. This, along with the photoelectric effect and a complete theory predicting discrete energy levels of electron orbitals, led to the theory of quantum mechanics improving on classical physics at very small scales.

    Quantum mechanics would come to be pioneered by Werner Heisenberg, Erwin Schrödinger and Paul Dirac. From this early work, and work in related fields, the Standard Model of particle physics was derived. Following the discovery of a particle with properties consistent with the Higgs boson at CERN in 2012, all fundamental particles predicted by the standard model, and no others, appear to exist; however, physics beyond the Standard Model, with theories such as supersymmetry, is an active area of research. Areas of mathematics in general are important to this field, such as the study of probabilities and groups.

    Core theories

    Physics deals with a wide variety of systems, although certain theories are used by all physicists. Each of these theories was experimentally tested numerous times and found to be an adequate approximation of nature. These central theories are important tools for research into more specialized topics, and any physicist, regardless of their specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.

    Distinction between classical and modern physics

    In the first decades of the 20th century physics was revolutionized by the discoveries of quantum mechanics and relativity. The changes were so fundamental that these new concepts became the foundation of “modern physics”, with other topics becoming “classical physics”. The majority of applications of physics are essentially classical.The laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light.Outside of this domain, observations do not match predictions provided by clasical mechaniscs.

    Classical theory

    Classical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, thermodynamics, and electromagnetism.Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies not subject to an acceleration), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter include such branches as hydrostatics, hydrodynamics and pneumatics. Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics, the physics of animal calls and hearing, and electroacoustics, the manipulation of audible sound waves using electronics.

    Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light. Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field, and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.

    Modern theory

    The discovery of relativity and of quantum mechanics in the first decades of the 20th century transformed the conceptual basis of physics without reducing the practical value of most of the physical theories developed up to that time. Consequently the topics of physics have come to be divided into “classical physics” and “modern physics”, with the latter category including effects related to quantum mechanics and relativity. Classical physics is generally concerned with matter and energy on the normal scale of observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics study matter on the smallest scale at which chemical elements can be identified. The physics of elementary particles is on an even smaller scale since it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in particle accelerators. On this scale, ordinary, commonsensical notions of space, time, matter, and energy are no longer valid.

    The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics. Classical mechanics approximates nature as continuous, while quantum theory is concerned with the discrete nature of many phenomena at the atomic and subatomic level and with the complementary aspects of particles and waves in the description of such phenomena. The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with motion in the absence of gravitational fields and the general theory of relativity with motion and its connection with gravitation. Both quantum theory and the theory of relativity find applications in many areas of modern physics.

    Fundamental concepts in modern physics include:

    Action
    Causality
    Covariance
    Particle
    Physical field
    Physical interaction
    Quantum
    Statistical ensemble
    Symmetry
    Wave

    Research

    Scientific method

    Physicists use the scientific method to test the validity of a physical theory. By using a methodical approach to compare the implications of a theory with the conclusions drawn from its related experiments and observations, physicists are better able to test the validity of a theory in a logical, unbiased, and repeatable way. To that end, experiments are performed and observations are made in order to determine the validity or invalidity of a theory.

    A scientific law is a concise verbal or mathematical statement of a relation that expresses a fundamental principle of some theory, such as Newton’s law of universal gravitation.

    Theory and experiment

    Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future experimental results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they strongly affect and depend upon each other. Progress in physics frequently comes about when experimental results defy explanation by existing theories, prompting intense focus on applicable modelling, and when new theories generate experimentally testable predictions, which inspire the development of new experiments (and often related equipment).

    Physicists who work at the interplay of theory and experiment are called phenomenologists, who study complex phenomena observed in experiment and work to relate them to a fundamental theory.

    Theoretical physics has historically taken inspiration from philosophy; electromagnetism was unified this way Beyond the known universe, the field of theoretical physics also deals with hypothetical issues, such as parallel universes, a multiverse, and higher dimensions. Theorists invoke these ideas in hopes of solving particular problems with existing theories; they then explore the consequences of these ideas and work toward making testable predictions.

    Experimental physics expands, and is expanded by, engineering and technology. Experimental physicists who are involved in basic research design and perform experiments with equipment such as particle accelerators and lasers, whereas those involved in applied research often work in industry, developing technologies such as magnetic resonance imaging (MRI) and transistors. Feynman has noted that experimentalists may seek areas that have not been explored well by theorists.

    Scope and aims

    Physics covers a wide range of phenomena, from elementary particles (such as quarks, neutrinos, and electrons) to the largest superclusters of galaxies. Included in these phenomena are the most basic objects composing all other things. Therefore, physics is sometimes called the “fundamental science”. Physics aims to describe the various phenomena that occur in nature in terms of simpler phenomena. Thus, physics aims to both connect the things observable to humans to root causes, and then connect these causes together.

    For example, the ancient Chinese observed that certain rocks (lodestone and magnetite) were attracted to one another by an invisible force. This effect was later called magnetism, which was first rigorously studied in the 17th century. But even before the Chinese discovered magnetism, the ancient Greeks knew of other objects such as amber, that when rubbed with fur would cause a similar invisible attraction between the two This was also first studied rigorously in the 17th century and came to be called electricity. Thus, physics had come to understand two observations of nature in terms of some root cause (electricity and magnetism). However, further work in the 19th century revealed that these two forces were just two different aspects of one force—electromagnetism. This process of “unifying” forces continues today, and electromagnetism and the weak nuclear force are now considered to be two aspects of the electroweak interaction. Physics hopes to find an ultimate reason (theory of everything) for why nature is as it is (see section Current research below for more information).

    Current research

    In condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity. Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.

    In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. The Large Hadron Collider has already found the Higgs boson, but future research aims to prove or disprove the supersymmetry, which extends the Standard Model of particle physics. Research on the nature of the major mysteries of dark matter and dark energy is also currently ongoing.

    Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity, chaos, or turbulence are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sandpiles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.

    These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems. In the 1932 Annual Review of Fluid Mechanics, Horace Lamb said:

    I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic.

    Branches and fields

    Branches of physics include classical mechanics; thermodynamics and statistical mechanics; electromagnetism and photonics; relativity; quantum mechanics, atomic physics, and molecular physics; optics and acoustics; condensed matter physics; high-energy particle physics and nuclear physics; cosmology; and interdisciplinary fields.

    Fields

    The major fields of physics, along with their subfields and the theories and concepts they employ, are shown in the following table.

    FieldSubfieldsMajor theoriesConcepts
    Nuclear and particle physicsNuclear physics, Nuclear astrophysics, Particle physics, Astroparticle physics, Particle physics phenomenologyStandard Model, Quantum field theory, Quantum electrodynamics, Quantum chromodynamics, Electroweak theory, Effective field theory, Lattice field theory, Gauge theory, Supersymmetry, Grand Unified Theory, Superstring theory, M-theory, AdS/CFT correspondenceFundamental interaction (gravitational, electromagnetic, weak, strong), Elementary particle, Spin, Antimatter, Spontaneous symmetry breaking, Neutrino oscillation, Seesaw mechanism, Brane, String, Quantum gravity, Theory of everything, Vacuum energy
    Atomic, molecular, and optical physicsAtomic physics, Molecular physics, Atomic and molecular astrophysics, Chemical physics, Optics, PhotonicsQuantum optics, Quantum chemistry, Quantum information sciencePhoton, Atom, Molecule, Diffraction, Electromagnetic radiation, Laser, Polarization (waves), Spectral line, Casimir effect
    Condensed matter physicsSolid-state physics, High-pressure physics, Low-temperature physics, Surface physics, Nanoscale and mesoscopic physics, Polymer physicsBCS theory, Bloch’s theorem, Density functional theory, Fermi gas, Fermi liquid theory, Many-body theory, Statistical mechanicsPhases (gas, liquid, solid), Bose–Einstein condensate, Electrical conduction, Phonon, Magnetism, Self-organization, Semiconductor, superconductor, superfluidity, Spin
    AstrophysicsAstronomy, Astrometry, Cosmology, Gravitation physics, High-energy astrophysics, Planetary astrophysics, Plasma physics, Solar physics, Space physics, Stellar astrophysicsBig Bang, Cosmic inflation, General relativity, Newton’s law of universal gravitation, Lambda-CDM model, MagnetohydrodynamicsBlack hole, Cosmic background radiation, Cosmic string, Cosmos, Dark energy, Dark matter, Galaxy, Gravity, Gravitational radiation, Gravitational singularity, Planet, Solar System, Star, Supernova, Universe
    Applied physicsAccelerator physics, Acoustics, Agrophysics, Atmospheric physics, Biophysics, Chemical physics, Communication physics, Econophysics, Engineering physics, Fluid dynamics, Geophysics, Laser physics, Materials physics, Medical physics, Nanotechnology, Optics, Optoelectronics, Photonics, Photovoltaics, Physical chemistry, Physical oceanography, Physics of computation, Plasma physics, Solid-state devices, Quantum chemistry, Quantum electronics, Quantum information science, Vehicle dynamics

    Since the 20th century, the individual fields of physics have become increasingly specialised, and today most physicists work in a single field for their entire careers. “Universalists” such as Einstein (1879–1955) and Lev Landau (1908–1968), who worked in multiple fields of physics, are now very rare.

    Contemporary research in physics can be broadly divided into nuclear and particle physics; condensed matter physics; atomic, molecular, and optical physics; astrophysics; and applied physics. Some physics departments also support physics education research and physics outreach.

    Nuclear and particle

    Particle physics is the study of the elementary constituents of matter and energy and the interactions between them. In addition, particle physicists design and develop the high-energy accelerators, detectors, and computer programsnecessary for this research. The field is also called “high-energy physics” because many elementary particles do not occur naturally but are created only during high-energy collisions of other particles.

    Currently, the interactions of elementary particles and fields are described by the Standard Model. The model accounts for the 12 known particles of matter (quarks and leptons) that interact via the strong, weak, and electromagnetic fundamental forces. Dynamics are described in terms of matter particles exchanging gauge bosons (gluons, W and Z bosons, and photons, respectively). The Standard Model also predicts a particle known as the Higgs boson. In July 2012 CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson,an integral part of the Higgs mechanism.

    Nuclear physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.

    Atomic, molecular, and optical

    Atomic, molecular, and optical physics (AMO) is the study of matter—matter and light—matter interactions on the scale of single atoms and molecules. The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of their relevant energy scales. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).

    Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions,low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of nuclear physics.

    Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light. Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.

    Condensed matter

    Condensed matter physics is the field of physics that deals with the macroscopic physical properties of matter.In particular, it is concerned with the “condensed” phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.

    The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms. More exotic condensed phases include the superfluid and the Bose–Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials, and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.

    Condensed matter physics is the largest field of contemporary physics. Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967. In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics. Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.

    Astrophysics

    Astrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the Solar System, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.

    The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the Earth’s atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.

    Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein’s theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble’s discovery that the universe is expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.

    The Big Bang was confirmed by the success of Big Bang nucleosynthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein’s general relativity and the cosmological principle. Cosmologists have recently established the ΛCDM model of the evolution of the universe, which includes cosmic inflation, dark energy, and dark matter.

    Other aspects

    Education

    Physics education or physics teaching refers to the education methods currently used to teach physics. The occupation is called physics educator or physics teacher. Physics education research refers to an area of pedagogical research that seeks to improve those methods. Historically, physics has been taught at the high school and college level primarily by the lecture method together with laboratory exercises aimed at verifying concepts taught in the lectures. These concepts are better understood when lectures are accompanied with demonstration, hand-on experiments, and questions that require students to ponder what will happen in an experiment and why. Students who participate in active learning for example with hands-on experiments learn through self-discovery. By trial and error they learn to change their preconceptions about phenomena in physics and discover the underlying concepts. Physics education is part of the broader area of science education.

    Careers

    A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe.Physicists generally are interested in the root or ultimate causes of phenomena, and usually frame their understanding in mathematical terms. They work across a wide range of research fields, spanning all length scales: from sub-atomic and particle physics, through biological physics, to cosmological length scales encompassing the universe as a whole. The field generally includes two types of physicists: experimental physicists who specialize in the observation of natural phenomena and the development and analysis of experiments, and theoretical physicists who specialize in mathematical modeling of physical systems to rationalize, explain and predict natural phenomena.

    Physicists can apply their knowledge towards solving practical problems or to developing new technologies (also known as applied physics or engineering physics).

    Philosophy

    Physics, as with the rest of science, relies on the philosophy of science and its “scientific method” to advance knowledge of the physical world. The scientific method employs a priori and a posteriori reasoning as well as the use of Bayesian inference to measure the validity of a given theory. Study of the philosophical issues surrounding physics, the philosophy of physics, involves issues such as the nature of space and time, determinism, and metaphysical outlooks such as empiricism, naturalism, and realism.

    Many physicists have written about the philosophical implications of their work, for instance Laplace, who championed causal determinism,and Erwin Schrödinger, who wrote on quantum mechanics.The mathematical physicist Roger Penrose has been called a Platonist by Stephen Hawking, a view Penrose discusses in his book, The Road to Reality. Hawking referred to himself as an “unashamed reductionist” and took issue with Penrose’s views.

    Mathematics provides a compact and exact language used to describe the order in nature. This was noted and advocated by Pythagoras, Plato, Galileo, and Newton. Some theorists, like Hilary Putnam and Penelope Maddy, hold that logical truths, and therefore mathematical reasoning, depend on the empirical world. This is usually combined with the claim that the laws of logic express universal regularities found in the structural features of the world, which may explain the peculiar relation between these fields.

    Physics uses mathematics to organise and formulate experimental results. From those results, precise or estimated solutions are obtained, or quantitative results, from which new predictions can be made and experimentally confirmed or negated. The results from physics experiments are numerical data, with their units of measure and estimates of the errors in the measurements. Technologies based on mathematics, like computation have made computational physics an active area of research.

    Ontology is a prerequisite for physics, but not for mathematics. It means physics is ultimately concerned with descriptions of the real world, while mathematics is concerned with abstract patterns, even beyond the real world. Thus physics statements are synthetic, while mathematical statements are analytic. Mathematics contains hypotheses, while physics contains theories. Mathematics statements have to be only logically true, while predictions of physics statements must match observed and experimental data.

    The distinction is clear-cut, but not always obvious. For example, mathematical physics is the application of mathematics in physics. Its methods are mathematical, but its subject is physical. The problems in this field start with a “mathematical model of a physical situation” (system) and a “mathematical description of a physical law” that will be applied to that system. Every mathematical statement used for solving has a hard-to-find physical meaning. The final mathematical solution has an easier-to-find meaning, because it is what the solver is looking for.

    Fundamental vs. applied physics

    Physics is a branch of fundamental science (also called basic science). Physics is also called “the fundamental science” because all branches of natural science including chemistry, astronomy, geology, and biology are constrained by laws of physics. Similarly, chemistry is often called the central science because of its role in linking the physical sciences. For example, chemistry studies properties, structures, and reactions of matter (chemistry’s focus on the molecular and atomic scale distinguishes it from physics). Structures are formed because particles exert electrical forces on each other, properties include physical characteristics of given substances, and reactions are bound by laws of physics, like conservation of energy, mass, and charge. Fundamental physics seeks to better explain and understand phenomena in all spheres, without a specific practical application as a goal, other than the deeper insight into the phenomema themselves.

    Applied physics is a general term for physics research and development that is intended for a particular use. An applied physics curriculum usually contains a few classes in an applied discipline, like geology or electrical engineering. It usually differs from engineering in that an applied physicist may not be designing something in particular, but rather is using physics or conducting physics research with the aim of developing new technologies or solving a problem.

    The approach is similar to that of applied mathematics. Applied physicists use physics in scientific research. For instance, people working on accelerator physics might seek to build better particle detectors for research in theoretical physics.

    Physics is used heavily in engineering. For example, statics, a subfield of mechanics, is used in the building of bridges and other static structures. The understanding and use of acoustics results in sound control and better concert halls; similarly, the use of optics creates better optical devices. An understanding of physics makes for more realistic flight simulators, video games, and movies, and is often critical in forensic investigations.

    With the standard consensus that the laws of physics are universal and do not change with time, physics can be used to study things that would ordinarily be mired in uncertainty. For example, in the study of the origin of the Earth, a physicist can reasonably model Earth’s mass, temperature, and rate of rotation, as a function of time allowing the extrapolation forward or backward in time and so predict future or prior events. It also allows for simulations in engineering that speed up the development of a new technology.

    There is also considerable interdisciplinarity, so many other important fields are influenced by physics (e.g., the fields of econophysics and sociophysics).

  • Motion

    In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed, and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time. The branch of physics describing the motion of objects without reference to their cause is called kinematics, while the branch studying forces and their effect on motion is called dynamics.

    If an object is not in motion relative to a given frame of reference, it is said to be at rest, motionless, immobile, stationary, or to have a constant or time-invariant position with reference to its surroundings. Modern physics holds that, as there is no absolute frame of reference, Isaac Newton’s concept of absolute motion cannot be determined. Everything in the universe can be considered to be in motion.

    Motion applies to various physical systems: objects, bodies, matter particles, matter fields, radiation, radiation fields, radiation particles, curvature, and space-time. One can also speak of the motion of images, shapes, and boundaries. In general, the term motion signifies a continuous change in the position or configuration of a physical system in space. For example, one can talk about the motion of a wave or the motion of a quantum particle, where the configuration consists of the probabilities of the wave or particle occupying specific positions.

    Equations of motion

    In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.

    Laws of motion

    In physics, the motion of massive bodies is described through two related sets of laws of mechanics. Classical mechanics for super atomic (larger than an atom) objects (such as cars, projectiles, planets, cells, and humans) and quantum mechanics for atomic and sub-atomic objects (such as helium, protons, and electrons). Historically, Newton and Euler formulated three laws of classical mechanics:

    First law:In an inertial reference frame, an object either remains at rest or continues to move in a straight line at a constant velocity, unless acted upon by a net force.
    Second law:In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}}.If the resultant force F→{\displaystyle {\vec {F}}} acting on a body or an object is not equal to zero, the body will have an acceleration a{\displaystyle a} that is in the same direction as the resultant force.
    Third law:When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction onto the first body.

    Classical mechanics

    Classical mechanics is used for describing the motion of macroscopic objects moving at speeds significantly slower than the speed of light, from projectiles to parts of machinery, as well as astronomical objects, such as spacecraft, planets, stars, and galaxies. It produces very accurate results within these domains and is one of the oldest and largest scientific descriptions in science, engineering, and technology.

    Classical mechanics is fundamentally based on Newton’s laws of motion. These laws describe the relationship between the forces acting on a body and the motion of that body. They were first compiled by Sir Isaac Newton in his work Philosophiæ Naturalis Principia Mathematica, which was first published on July 5, 1687. Newton’s three laws are:

    1. A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force. (This is known as the law of inertia.)
    2. Force (F→{\displaystyle {\vec {F}}}) is equal to the change in momentum per change in time (Δmv→Δt{\displaystyle {\frac {\Delta m{\vec {v}}}{\Delta t}}}). For a constant mass, force equals mass times acceleration (F→=ma→{\displaystyle {\vec {F}}=m{\vec {a}}} ).
    3. For every action, there is an equal and opposite reaction. (In other words, whenever one body exerts a force F→{\displaystyle {\vec {F}}} onto a second body, (in some cases, which is standing still) the second body exerts the force −F→{\displaystyle -{\vec {F}}} back onto the first body. F→{\displaystyle {\vec {F}}} and −F→{\displaystyle -{\vec {F}}} are equal in magnitude and opposite in direction. So, the body that exerts F→{\displaystyle {\vec {F}}} will be pushed backward.)

    Newton’s three laws of motion were the first to accurately provide a mathematical model for understanding orbiting bodies in outer space. This explanation unified the motion of celestial bodies and the motion of objects on Earth.

    Relativistic mechanics

    Modern kinematics developed with study of electromagnetism and refers all velocities v

     to their ratio to speed of light c

    . Velocity is then interpreted as rapidity, the hyperbolic angle φ

     for which the hyperbolic tangent function tanh⁡φ=v÷c

    . Acceleration, the change of velocity over time, then changes rapidity according to Lorentz transformations. This part of mechanics is special relativity. Efforts to incorporate gravity into relativistic mechanics were made by W. K. Clifford and Albert Einstein. The development used differential geometry to describe a curved universe with gravity; the study is called general relativity.

    Quantum mechanics

    Quantum mechanics is a set of principles describing physical reality at the atomic level of matter (molecules and atoms) and the subatomic particles (electrons, protons, neutrons, and even smaller elementary particles such as quarks). These descriptions include the simultaneous wave-like and particle-like behavior of both matter and radiation energy as described in the wave–particle duality.

    In classical mechanics, accurate measurements and predictions of the state of objects can be calculated, such as location and velocity. In quantum mechanics, due to the Heisenberg uncertainty principle, the complete state of a subatomic particle, such as its location and velocity, cannot be simultaneously determined.

    In addition to describing the motion of atomic level phenomena, quantum mechanics is useful in understanding some large-scale phenomena such as superfluidity, superconductivity, and biological systems, including the function of smell receptors and the structures of protein.

    Orders of magnitude

    Humans, like all known things in the universe, are in constant motion however, aside from obvious movements of the various external body parts and locomotion, humans are in motion in a variety of ways that are more difficult to perceive. Many of these “imperceptible motions” are only perceivable with the help of special tools and careful observation. The larger scales of imperceptible motions are difficult for humans to perceive for two reasons: Newton’s laws of motion (particularly the third), which prevents the feeling of motion on a mass to which the observer is connected, and the lack of an obvious frame of reference that would allow individuals to easily see that they are moving. The smaller scales of these motions are too small to be detected conventionally with human senses.

    Universe

    Spacetime (the fabric of the universe) is expanding, meaning everything in the universe is stretching, like a rubber band. This motion is the most obscure, not involving physical movement but a fundamental change in the universe’s nature. The primary source of verification of this expansion was provided by Edwin Hubble who demonstrated that all galaxies and distant astronomical objects were moving away from Earth, known as Hubble’s law, predicted by a universal expansion.

    Galaxy

    The Milky Way Galaxy is moving through space and many astronomers believe the velocity of this motion to be approximately 600 kilometres per second (1,340,000 mph) relative to the observed locations of other nearby galaxies. Another reference frame is provided by the Cosmic microwave background. This frame of reference indicates that the Milky Way is moving at around 582 kilometres per second (1,300,000 mph).

    Sun and Solar System

    The Milky Way is rotating around its dense Galactic Center, thus the Sun is moving in a circle within the galaxy’s gravity. Away from the central bulge, or outer rim, the typical stellar velocity is between 210 and 240 kilometres per second (470,000 and 540,000 mph). All planets and their moons move with the Sun. Thus, the Solar System is in motion.

    Earth

    The Earth is rotating or spinning around its axis. This is evidenced by day and night, at the equator the earth has an eastward velocity of 0.4651 kilometres per second (1,040 mph). The Earth is also orbiting around the Sun in an orbital revolution. A complete orbit around the Sun takes one year, or about 365 days; it averages a speed of about 30 kilometres per second (67,000 mph)

    Continents

    The Theory of Plate tectonics tells us that the continents are drifting on convection currents within the mantle, causing them to move across the surface of the planet at the slow speed of approximately 2.54 centimetres (1 in) per year. However, the velocities of plates range widely. The fastest-moving plates are the oceanic plates, with the Cocos Plate advancing at a rate of 75 millimetres (3.0 in) per year and the Pacific Plate moving 52–69 millimetres (2.0–2.7 in) per year. At the other extreme, the slowest-moving plate is the Eurasian Plate, progressing at a typical rate of about 21 millimetres (0.83 in) per year.

    Internal body

    The human heart is regularly contracting to move blood throughout the body. Through larger veins and arteries in the body, blood has been found to travel at approximately 0.33 m/s. Though considerable variation exists, and peak flows in the venae cavae have been found between 0.1 and 0.45 metres per second (0.33 and 1.48 ft/s). additionally, the smooth muscles of hollow internal organs are moving. The most familiar would be the occurrence of peristalsis, which is where digested food is forced throughout the digestive tract. Though different foods travel through the body at different rates, an average speed through the human small intestine is 3.48 kilometres per hour (2.16 mph). The human lymphatic system is also constantly causing movements of excess fluids, lipids, and immune system related products around the body. The lymph fluid has been found to move through a lymph capillary of the skin at approximately 0.0000097 m/s.

    Cells

    The cells of the human body have many structures and organelles that move throughout them. Cytoplasmic streaming is a way in which cells move molecular substances throughout the cytoplasm, various motor proteins work as molecular motors within a cell and move along the surface of various cellular substrates such as microtubules, and motor proteins are typically powered by the hydrolysis of adenosine triphosphate (ATP), and convert chemical energy into mechanical work. Vesicles propelled by motor proteins have been found to have a velocity of approximately 0.00000152 m/s.

    Particles

    According to the laws of thermodynamics, all particles of matter are in constant random motion as long as the temperature is above absolute zero. Thus the molecules and atoms that make up the human body are vibrating, colliding, and moving. This motion can be detected as temperature; higher temperatures, which represent greater kinetic energy in the particles, feel warm to humans who sense the thermal energy transferring from the object being touched to their nerves. Similarly, when lower temperature objects are touched, the senses perceive the transfer of heat away from the body as a feeling of cold.

    Subatomic particles

    Within the standard atomic orbital model, electrons exist in a region around the nucleus of each atom. This region is called the electron cloud. According to Bohr’s model of the atom, electrons have a high velocity, and the larger the nucleus they are orbiting the faster they would need to move. If electrons were to move about the electron cloud in strict paths the same way planets orbit the Sun, then electrons would be required to do so at speeds that would far exceed the speed of light. However, there is no reason that one must confine oneself to this strict conceptualization (that electrons move in paths the same way macroscopic objects do), rather one can conceptualize electrons to be ‘particles’ that capriciously exist within the bounds of the electron cloud. Inside the atomic nucleus, the protons and neutrons are also probably moving around due to the electrical repulsion of the protons and the presence of angular momentum of both particles.

    Light

    Light moves at a speed of 299,792,458 m/s, or 299,792.458 kilometres per second (186,282.397 mi/s), in a vacuum. The speed of light in vacuum is also the speed of all massless particles and associated fields in a vacuum, and it is the upper limit on the speed at which energy, matter, information or causation can travel. The speed of light in vacuum is thus the upper limit for speed for all physical systems.

    In addition, the speed of light is an invariant quantity: it has the same value, irrespective of the position or speed of the observer. This property makes the speed of light c a natural measurement unit for speed and a fundamental constant of nature.

    In 2019, the speed of light was redefined alongside all seven SI base units using what it calls “the explicit-constant formulation”, where each “unit is defined indirectly by specifying explicitly an exact value for a well-recognized fundamental constant”, as was done for the speed of light. A new, but completely equivalent, wording of the metre’s definition was proposed: “The metre, symbol m, is the unit of length; its magnitude is set by fixing the numerical value of the speed of light in vacuum to be equal to exactly 299792458 when it is expressed in the SI unit m s−1.” This implicit change to the speed of light was one of the changes that was incorporated in the 2019 revision of the SI, also termed the New SI.

    Superluminal motion

    Some motion appears to an observer to exceed the speed of light. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed of light. All of these sources are thought to contain a black hole, responsible for the ejection of mass at high velocities. Light echoes can also produce apparent superluminal motion. This occurs owing to how motion is often calculated at long distances; oftentimes calculations fail to account for the fact that the speed of light is finite. When measuring the movement of distant objects across the sky, there is a large time delay between what has been observed and what has occurred, due to the large distance the light from the distant object has to travel to reach us. The error in the above naive calculation comes from the fact that when an object has a component of velocity directed towards the Earth, as the object moves closer to the Earth that time delay becomes smaller. This means that the apparent speed as calculated above is greater than the actual speed. Correspondingly, if the object is moving away from the Earth, the above calculation underestimates the actual speed.

    Types of motion

    • Simple harmonic motion – motion in which the body oscillates in such a way that the restoring force acting on it is directly proportional to the body’s displacement. Mathematically Force is directly proportional to the negative of displacement. Negative sign signifies the restoring nature of the force. (e.g., that of a pendulum).
    • Linear motion – motion that follows a straight linear path, and whose displacement is exactly the same as its trajectory. [Also known as rectilinear motion]
    • Reciprocal motion
    • Brownian motion – the random movement of very small particles
    • Circular motion
    • Rotatory motion – a motion about a fixed point. (e.g. Ferris wheel).
    • Curvilinear motion – It is defined as the motion along a curved path that may be planar or in three dimensions.
    • Rolling motion – (as of the wheel of a bicycle)
    • Oscillatory – (swinging from side to side)
    • Vibratory motion
    • Combination (or simultaneous) motions – Combination of two or more above listed motions
    • Projectile motion – uniform horizontal motion + vertical accelerated motion

    Fundamental motions

    • Linear motion
    • Circular motion
    • Oscillation
    • Wave
    • Relative motion
    • Rotary motion
  • Transport

    Transport (in British English) or transportation (in American English) is the intentional movement of humans, animals, and goods from one location to another. Modes of transport include air, land (rail and road), water, cable, pipelines, and space. The field can be divided into infrastructure, vehicles, and operations. Transport enables human trade, which is essential for the development of civilizations.

    Transport infrastructure consists of both fixed installations, including roads, railways, airways, waterways, canals, and pipelines, and terminals such as airports, railway stations, bus stations, warehouses, trucking terminals, refueling depots (including fuel docks and fuel stations), and seaports. Terminals may be used both for the interchange of passengers and cargo and for maintenance.

    Means of transport are any of the different kinds of transport facilities used to carry people or cargo. They may include vehicles, riding animals, and pack animals. Vehicles may include wagons, automobiles, bicycles, buses, trains, trucks, helicopters, watercraft, spacecraft, and aircraft.

    Modes

    A mode of transport is a solution that makes use of a certain type of vehicle, infrastructure, and operation. The transport of a person or of cargo may involve one mode or several of the modes, with the latter case being called inter-modal or multi-modal transport. Each mode has its own advantages and disadvantages, and will be chosen on the basis of cost, capability, and route.

    Governments deal with the way the vehicles are operated, and the procedures set for this purpose, including financing, legalities, and policies. In the transport industry, operations and ownership of infrastructure can be either public or private, depending on the country and mode.

    Passenger transport may be public, where operators provide scheduled services, or private. Freight transport has become focused on containerization, although bulk transport is used for large volumes of durable items. Transport plays an important part in economic growth and globalization, but most types cause air pollution and use large amounts of land. While it is heavily subsidized by governments, good planning of transport is essential to make traffic flow and restrain urban sprawl.

    Human-powered

    Human-powered transport, a form of sustainable transport, is the transport of people or goods using human muscle-power, in the form of walking, running, and swimming. Modern technology has allowed machines to enhance human power. Human-powered transport remains popular for reasons of cost-saving, leisure, physical exercise, and environmentalism; it is sometimes the only type available, especially in underdeveloped or inaccessible regions.

    Although humans are able to walk without infrastructure, the transport can be enhanced through the use of roads, especially when using the human power with vehicles, such as bicycles and inline skates. Human-powered vehicles have also been developed for difficult environments, such as snow and water, by watercraft rowing and skiing; even the air can be entered with human-powered aircraft.

    Animal-powered

    Animal-powered transport is the use of working animals for the movement of people and commodities. Humans may ride some of the animals directly, use them as pack animals for carrying goods, or harness them, alone or in teams, to pull sleds or wheeled vehicles.

    Air

    A fixed-wing aircraft, commonly called an airplane, is a heavier-than-air craft where movement of the air in relation to the wings is used to generate lift. The term is used to distinguish this from rotary-wing aircraft, where the movement of the lift surfaces relative to the air generates lift. A gyroplane is both fixed-wing and rotary wing. Fixed-wing aircraft range from small trainers and recreational aircraft to large airliners and military cargo aircraft.

    Two things necessary for aircraft are air flow over the wings for lift and an area for landing. The majority of aircraft also need an airport with the infrastructure for maintenance, restocking, and refueling and for the loading and unloading of crew, cargo, and passengers. While the vast majority of aircraft land and take off on land, some are capable of take-off and landing on ice, snow, and calm water.

    The aircraft is the second fastest method of transport, after the rocket. Commercial jets can reach up to 955 kilometres per hour (593 mph), single-engine aircraft 555 kilometres per hour (345 mph). Aviation is able to quickly transport people and limited amounts of cargo over longer distances, but incurs high costs and energy use; for short distances or in inaccessible places, helicopters can be used. As of April 28, 2009, The Guardian article notes that “the WHO estimates that up to 500,000 people are on planes at any time.”

    Land

    Land transport covers all land-based transport systems that provide for the movement of people, goods, and services. Land transport plays a vital role in linking communities to each other. Land transport is a key factor in urban planning. It consists of two kinds, rail and road.

    Rail

    Rail transport is where a train runs along a set of two parallel steel rails, known as a railway or railroad. The rails are anchored perpendicular to ties (or sleepers) of timber, concrete, or steel, to maintain a consistent distance apart, or gauge. The rails and perpendicular beams are placed on a foundation made of concrete or compressed earth and gravel in a bed of ballast. Alternative methods include monorail and maglev.

    A train consists of one or more connected vehicles that operate on the rails. Propulsion is commonly provided by a locomotive, that hauls a series of unpowered cars, that can carry passengers or freight. The locomotive can be powered by steam, by diesel, or by electricity supplied by trackside systems. Alternatively, some or all the cars can be powered, known as a multiple unit. Also, a train can be powered by horses, cables, gravity, pneumatics, and gas turbines. Railed vehicles move with much less friction than rubber tires on paved roads, making trains more energy efficient, though not as efficient as ships.

    Intercity trains are long-haul services connecting cities; modern high-speed rail is capable of speeds up to 350 km/h (220 mph), but this requires specially built track. Regional and commuter trains feed cities from suburbs and surrounding areas, while intra-urban transport is performed by high-capacity tramways and rapid transits, often making up the backbone of a city’s public transport. Freight trains traditionally used box cars, requiring manual loading and unloading of the cargo. Since the 1960s, container trains have become the dominant solution for general freight, while large quantities of bulk are transported by dedicated trains

    Road

    A road is an identifiable route, way, or path between two or more places. Roads are typically smoothed, paved, or otherwise prepared to allow easy travel; though they need not be, and historically many roads were simply recognizable routes without any formal construction or maintenance. In urban areas, roads may pass through a city or village and be named as streets, serving a dual function as urban space easement and route.

    The most common road vehicle is the automobile; a wheeled passenger vehicle that carries its own motor. Other users of roads include buses, trucks, motorcycles, bicycles, and pedestrians. As of 2010, there were 1.015 billion automobiles worldwide. Road transport offers complete freedom to road users to transfer the vehicle from one lane to the other and from one road to another according to the need and convenience. This flexibility of changes in location, direction, speed, and timings of travel is not available to other modes of transport. It is possible to provide door-to-door service only by road transport.

    Automobiles provide high flexibility with low capacity, but require high energy and area use, and are the main source of harmful noise and air pollution in cities; buses allow for more efficient travel at the cost of reduced flexibility. Road transport by truck is often the initial and final stage of freight transport.

    Water

    Water transport is movement by means of a watercraft—such as a barge, boat, ship, or sailboat—over a body of water, such as a sea, ocean, lake, canal, or river. The need for buoyancy is common to watercraft, making the hull a dominant aspect of its construction, maintenance, and appearance.

    In the 19th century, the first steam ships were developed, using a steam engine to drive a paddle wheel or propeller to move the ship. The steam was produced in a boiler using wood or coal and fed through a steam external combustion engine. Now most ships have an internal combustion engine using a slightly refined type of petroleum called bunker fuel. Some ships, such as submarines, use nuclear power to produce the steam. Recreational or educational craft still use wind power, while some smaller craft use internal combustion engines to drive one or more propellers or, in the case of jet boats, an inboard water jet. In shallow draft areas, hovercraft are propelled by large pusher-prop fans. (See Marine propulsion.)

    Although it is slow compared to other transport, modern sea transport is a highly efficient method of transporting large quantities of goods. Commercial vessels, nearly 35,000 in number, carried 7.4 billion tons of cargo in 2007. Transport by water is significantly less costly than air transport for transcontinental shipping; short sea shipping and ferries remain viable in coastal areas.

    Other modes

    Pipeline transport sends goods through a pipe; most commonly liquid and gases are sent, but pneumatic tubes can also send solid capsules using compressed air. For liquids/gases, any chemically stable liquid or gas can be sent through a pipeline. Short-distance systems exist for sewage, slurry, water, and beer, while long-distance networks are used for petroleum and natural gas.

    Cable transport is a broad mode where vehicles are pulled by cables instead of an internal power source. It is most commonly used at steep gradient. Typical solutions include aerial tramways, elevators, and ski lifts; some of these are also categorized as conveyor transport.

    Spaceflight is transport outside Earth’s atmosphere by means of a spacecraft. It is most frequently used for satellites placed in Earth orbit. However, human spaceflight mission have landed on the Moon and are occasionally used to rotate crew-members to space stations. Uncrewed spacecraft have also been sent to all the planets of the Solar System.

    Suborbital spaceflight is the fastest of the existing and planned transport systems from a place on Earth to a distant “other place” on Earth. Faster transport could be achieved through part of a low Earth orbit or by following that trajectory even faster, using the propulsion of the rocket to steer it.

    Elements

    Infrastructure

    Infrastructure is the fixed installations that allow a vehicle to operate. It consists of a roadway, a terminal, and facilities for parking and maintenance. For rail, pipeline, road, and cable transport, the entire way the vehicle travels must be constructed. Air and watercraft are able to avoid this, since the airway and seaway do not need to be constructed. However, they require fixed infrastructure at terminals.

    Terminals such as airports, ports, and stations, are locations where passengers and freight can be transferred from one vehicle or mode to another. For passenger transport, terminals are integrating different modes to allow riders, who are interchanging between modes, to take advantage of each mode’s benefits. For instance, airport rail links connect airports to the city centres and suburbs. The terminals for automobiles are parking lots, while buses and coaches can operate from simple stops. For freight, terminals act as transshipment points, though some cargo is transported directly from the point of production to the point of use.

    The financing of infrastructure can either be public or private. Transport is often a natural monopoly and a necessity for the public; roads, and in some countries railways and airports, are funded through taxation. New infrastructure projects can have high costs and are often financed through debt. Many infrastructure owners, therefore, impose usage fees, such as landing fees at airports or toll plazas on roads. Independent of this, authorities may impose taxes on the purchase or use of vehicles. Because of poor forecasting and overestimation of passenger numbers by planners, there is frequently a benefits shortfall for transport infrastructure projects.

    Means of transport

    Animals

    Animals used in transportation include pack animals and riding animals.

    Vehicles

    A vehicle is a non-living device that is used to move people and goods. Unlike the infrastructure, the vehicle moves along with the cargo and riders. Unless being pulled/pushed by a cable or muscle-power, the vehicle must provide its own propulsion; this is most commonly done through a steam engine, combustion engine, electric motor, jet engine, or rocket, though other means of propulsion also exist. Vehicles also need a system of converting the energy into movement; this is most commonly done through wheels, propellers, and pressure.

    Vehicles are most commonly staffed by a driver. However, some systems, such as people movers and some rapid transits, are fully automated. For passenger transport, the vehicle must have a compartment, seat, or platform for the passengers. Simple vehicles, such as automobiles, bicycles, or simple aircraft, may have one of the passengers as a driver. Recently, the progress related to the Fourth Industrial Revolution has brought a lot of new emerging technologies for transportation and automotive fields such as Connected Vehicles and Autonomous Driving. These innovations are said to form future mobility, but concerns remain on safety and cybersecurity, particularly concerning connected and autonomous mobility.

    Operation

    Private transport is only subject to the owner of the vehicle, who operates the vehicle themselves. For public transport and freight transport, operations are done through private enterprise or by governments. The infrastructure and vehicles may be owned and operated by the same company, or they may be operated by different entities. Traditionally, many countries have had a national airline and national railway. Since the 1980s, many of these have been privatized. International shipping remains a highly competitive industry with little regulation, but ports can be public-owned.

    Policy

    As the population of the world increases, cities grow in size and population—according to the United Nations, 55% of the world’s population live in cities, and by 2050 this number is expected to rise to 68%. Public transport policy must evolve to meet the changing priorities of the urban world. The institution of policy enforces order in transport, which is by nature chaotic as people attempt to travel from one place to another as fast as possible. This policy helps to reduce accidents and save lives.

    Functions

    Relocation of travelers and cargo are the most common uses of transport. However, other uses exist, such as the strategic and tactical relocation of armed forces during warfare, or the civilian mobility construction or emergency equipment.

    Passenger

    Passenger transport, or travel, is divided into public and private transport. Public transport is scheduled services on fixed routes, while private is vehicles that provide ad hoc services at the riders desire. The latter offers better flexibility, but has lower capacity and a higher environmental impact. Travel may be as part of daily commuting or for business, leisure, or migration.

    Short-haul transport is dominated by the automobile and mass transit. The latter consists of buses in rural and small cities, supplemented with commuter rail, trams, and rapid transit in larger cities. Long-haul transport involves the use of the automobile, trains, coaches, and aircraft, the last of which have become predominantly used for the longest, including intercontinental, travel. Intermodal passenger transport is where a journey is performed through the use of several modes of transport; since all human transport normally starts and ends with walking, all passenger transport can be considered intermodal. Public transport may also involve the intermediate change of vehicle, within or across modes, at a transport hub, such as a bus or railway station.

    Taxis and buses can be found on both ends of the public transport spectrum. Buses are the cheapest mode of transport but are not necessarily flexible, and taxis are very flexible but more expensive. In the middle is demand-responsive transport, offering flexibility whilst remaining affordable.

    International travel may be restricted for some individuals due to legislation and visa requirements.

    Medical

    An ambulance is a vehicle used to transport people from or between places of treatment, and in some instances will also provide out-of-hospital medical care to the patient. The word is often associated with road-going “emergency ambulances”, which form part of emergency medical services, administering emergency care to those with acute medical problems.

    Air medical services is a comprehensive term covering the use of air transport to move patients to and from healthcare facilities and accident scenes. Personnel provide comprehensive prehospital and emergency and critical care to all types of patients during aeromedical evacuation or rescue operations, aboard helicopters, propeller aircraft, or jet aircraft.

    Freight

    Freight transport, or shipping, is a key in the value chain in manufacturing. With increased specialization and globalization, production is being located further away from consumption, rapidly increasing the demand for transport.Transport creates place utility by moving the goods from the place of production to the place of consumption. While all modes of transport are used for cargo transport, there is high differentiation between the nature of the cargo transport, in which mode is chosen. Logistics refers to the entire process of transferring products from producer to consumer, including storage, transport, transshipment, warehousing, material-handling, and packaging, with associated exchange of information. Incoterm deals with the handling of payment and responsibility of risk during transport.

    Containerization, with the standardization of ISO containers on all vehicles and at all ports, has revolutionized international and domestic trade, offering a huge reduction in transshipment costs. Traditionally, all cargo had to be manually loaded and unloaded into the haul of any ship or car; containerization allows for automated handling and transfer between modes, and the standardized sizes allow for gains in economy of scale in vehicle operation. This has been one of the key driving factors in international trade and globalization since the 1950s.

    Bulk transport is common with cargo that can be handled roughly without deterioration; typical examples are ore, coal, cereals, and petroleum. Because of the uniformity of the product, mechanical handling can allow enormous quantities to be handled quickly and efficiently. The low value of the cargo combined with high volume also means that economies of scale become essential in transport, and gigantic ships and whole trains are commonly used to transport bulk. Liquid products with sufficient volume may also be transported by pipeline.

    Air freight has become more common for products of high value; while less than one percent of world transport by volume is by airline, it amounts to forty percent of the value. Time has become especially important in regards to principles such as postponement and just-in-time within the value chain, resulting in a high willingness to pay for quick delivery of key components or items of high value-to-weight ratio. In addition to mail, common items sent by air include electronics and fashion clothing.

    Impact

    Economic

    Transport is a key necessity for specialization—allowing production and consumption of products to occur at different locations. Throughout history, transport has been a spur to expansion; better transport allows more trade and a greater spread of people. Economic growth has always been dependent on increasing the capacity and rationality of transport. But the infrastructure and operation of transport have a great impact on the land, and transport is the largest drainer of energy, making transport sustainability a major issue.

    Due to the way modern cities and communities are planned and operated, a physical distinction between home and work is usually created, forcing people to transport themselves to places of work, study, or leisure, as well as to temporarily relocate for other daily activities. Passenger transport is also the essence of tourism, a major part of recreational transport. Commerce requires the transport of people to conduct business, either to allow face-to-face communication for important decisions or to move specialists from their regular place of work to sites where they are needed.

    In lean thinking, transporting materials or work in process from one location to another is seen as one of the seven wastes (Japanese term: muda) which do not add value to a product.

    Planning

    Transport planning allows for high use and less impact regarding new infrastructure. Using models of transport forecasting, planners are able to predict future transport patterns. On the operative level, logistics allows owners of cargo to plan transport as part of the supply chain. Transport as a field is also studied through transport economics, a component for the creation of regulation policy by authorities. Transport engineering, a sub-discipline of civil engineering, must take into account trip generation, trip distribution, mode choice, and route assignment, while the operative level is handled through traffic engineering.

    Because of the negative impacts incurred, transport often becomes the subject of controversy related to choice of mode, as well as increased capacity. Automotive transport can be seen as a tragedy of the commons, where the flexibility and comfort for the individual deteriorate the natural and urban environment for all. Density of development depends on mode of transport, with public transport allowing for better spatial use. Good land use keeps common activities close to people’s homes and places higher-density development closer to transport lines and hubs, to minimize the need for transport. There are economies of agglomeration. Beyond transport, some land uses are more efficient when clustered. Transport facilities consume land, and in cities pavement (devoted to streets and parking) can easily exceed 20 percent of the total land use. An efficient transport system can reduce land waste.

    Too much infrastructure and too much smoothing for maximum vehicle throughput mean that in many cities there is too much traffic and many—if not all—of the negative impacts that come with it. It is only in recent years that traditional practices have started to be questioned in many places; as a result of new types of analysis which bring in a much broader range of skills than those traditionally relied on—spanning such areas as environmental impact analysis, public health, sociology, and economics—the viability of the old mobility solutions is increasingly being questioned.

    Environment

    Transport is a major use of energy and burns most of the world’s petroleum. This creates air pollution, including nitrous oxides and particulates, and is a significant contributor to global warming through emission of carbon dioxide, for which transport is the fastest-growing emission sector. According to the International Energy Agency (IEA), the transportation sector accounts for more than one-third of CO2 emissions globally in the early 2020ies. By sub-sector, road transport is the largest contributor to global warming. Environmental regulations in developed countries have reduced individual vehicles’ emissions; however, this has been offset by increases in the numbers of vehicles and in the use of each vehicle. Some pathways to reduce the carbon emissions of road vehicles considerably have been studied. Energy use and emissions vary largely between modes, causing environmentalists to call for a transition from air and road to rail and human-powered transport, as well as increased transport electrification and energy efficiency.

    Other environmental impacts of transport systems include traffic congestion and automobile-oriented urban sprawl, which can consume natural habitat and agricultural lands. By reducing transport emissions globally, it is predicted that there will be significant positive effects on Earth’s air quality, acid rain, smog, and climate change.

    While electric cars are being built to cut down CO2 emission at the point of use, an approach that is becoming popular among cities worldwide is to prioritize public transport, bicycles, and pedestrian movement. Redirecting vehicle movement to create 20-minute neighbourhoods that promotes exercise while greatly reducing vehicle dependency and pollution. Some policies are levying a congestion charge to cars for travelling within congested areas during peak time.

    Airplane emissions change depending on the flight distance. It takes a lot of energy to take off and land, so longer flights are more efficient per mile traveled. However, longer flights naturally use more fuel in total. Short flights produce the most CO2 per passenger mile, while long flights produce slightly less.Things get worse when planes fly high in the atmosphere. Their emissions trap much more heat than those released at ground level. This is not just because of CO2, but a mix of other greenhouse gases in the exhaust.] In 2022 global CO2 emissions from the transport sector grew by more than 250 Mt CO2 to nearly 8 Gt CO2, which represent more than 3% compared to 2021. Aviation was responsible for a significant part of that increase.

    City buses produce about 0.3 kg of CO2 for every mile traveled per passenger. For long-distance bus trips (over 20 miles), that pollution drops to about 0.08 kg of CO2 per passenger mile.On average, commuter trains produce around 0.17 kg of CO2 for each mile traveled per passenger. Long-distance trains are slightly higher at about 0.19 kg of CO2 per passenger mile.The fleet emission average for delivery vans, trucks and big rigs is 10.17 kg (22.4 lb) CO2 per gallon of diesel consumed. Delivery vans and trucks average about 7.8 mpg (or 1.3 kg of CO2 per mile) while big rigs average about 5.3 mpg (or 1.92 kg of CO2 per mile

    Sustainable development

    The United Nations first formally recognized the role of transport in sustainable development in the 1992 United Nations Earth summit. In the 2012 United Nations World Conference, global leaders unanimously recognized that transport and mobility are central to achieving the sustainability targets. In recent years, data has been collected to show that the transport sector contributes to a quarter of the global greenhouse gas emissions, and therefore sustainable transport has been mainstreamed across several of the 2030 Sustainable Development Goals, especially those related to food, security, health, energy, economic growth, infrastructure, and cities and human settlements. Meeting sustainable transport targets is said to be particularly important to achieving the Paris Agreement.

    There are various Sustainable Development Goals (SDGs) that are promoting sustainable transport to meet the defined goals. These include SDG 3 on health (increased road safety), SDG 7 on energy, SDG 8 on decent work and economic growth, SDG 9 on resilient infrastructure, SDG 11 on sustainable cities (access to transport and expanded public transport), SDG 12 on sustainable consumption and production (ending fossil fuel subsidies), and SDG 14 on oceans, seas, and marine resources.

    Contemporary development studies recognise transportation networks as a key element of economic development, socio-economic well-being and poverty reduction.[57] However, road network development has not always fulfilled its original intentions and has contributed significantly to environmental degradation and, in some cases, led to the loss of cultural traditions and the marginalisation of indigenous peoples. Compared to roads, the development of air links (helicopters and planes) has had an even more devastating impact. What is more, helicopters used for tourist activities are subject to considerable criticism from a perspective of environmental protection as well as sports ethics.

    History

    Natural

    Humans’ first ways to move included walking, running, and swimming. The domestication of animals introduced a new way to lay the burden of transport on more powerful creatures, allowing the hauling of heavier loads, or humans riding animals for greater speed and duration. Inventions such as the wheel and the sled (U.K. sledge) helped make animal transport more efficient through the introduction of vehicles.

    The first forms of road transport involved animals, such as horses (domesticated in the 4th or the 3rd millennium BCE), oxen (from about 8000 BCE), or humans carrying goods over dirt tracks that often followed game trails.

    Water transport

    Water transport, including rowed and sailed vessels, dates back to time immemorial and was the only efficient way to transport large quantities or over large distances prior to the Industrial Revolution. The first watercraft were canoes cut out from tree trunks. Early water transport was accomplished with ships that were either rowed or used the wind for propulsion, or a combination of the two. The importance of water has led to most cities that grew up as sites for trading being located on rivers or on the sea-shore, often at the intersection of two bodies of water.

    Mechanical

    Until the Industrial Revolution, transport remained slow and costly, and production and consumption gravitated as close to each other as feasible.The Industrial Revolution in the 19th century saw several inventions fundamentally change transport. With telegraphy, communication became instant and independent of the transport of physical objects. The invention of the steam engine, closely followed by its application in rail transport, made land transport independent of human or animal muscles. Both speed and capacity increased, allowing specialization through manufacturing being located independently of natural resources. The 19th century also saw the development of the steam ship, which sped up global transport.

    With the development of the combustion engine and the automobile around 1900, road transport became more competitive again, and mechanical private transport originated. The first “modern” highways were constructed during the 19th century with macadam. Later, tarmac and concrete became the dominant paving materials.

    In 1903 the Wright brothers demonstrated the first successful controllable airplane, and after World War I (1914–1918) aircraft became a fast way to transport people and express goods over long distances.

    After World War II (1939–1945) the automobile and airlines took higher shares of transport, reducing rail and water to freight and short-haul passenger services. Scientific spaceflight began in the 1950s, with rapid growth until the 1970s, when interest dwindled. In the 1950s the introduction of containerization gave massive efficiency gains in freight transport, fostering globalization.[30] International air travel became much more accessible in the 1960s with the commercialization of the jet engine. Along with the growth in automobiles and motorways, rail and water transport declined in relative importance. After the introduction of the Shinkansen in Japan in 1964, high-speed rail in Asia and Europe started attracting passengers on long-haul routes away from the airlines.

    Early in U.S. history at 15th century private joint-stock corporations owned most aqueducts, bridges, canals, railroads, roads, and tunnels. Most such transport infrastructure came under government control in the late 19th and early 20th centuries, culminating in the nationalization of inter-city passenger rail-service with the establishment of Amtrak. Recently,[when?] however, a movement to privatize roads and other infrastructure has gained some ground and adherents.